
UaESMC

Project No: FP7-284731

Project Acronym: UaESMC

Project Title: Usable and Efficient Secure Multiparty Computation

Instrument: Specific Targeted Research Project

Scheme: Information & Communication Technologies

Future and Emerging Technologies (FET-Open)

Deliverable D2.2.3

Advances in SMC techniques

Due date of deliverable: 31st July 2015

Actual submission date: 31st July 2015

Start date of the project: 1st February 2012 Duration: 42 months

Organisation name of lead contractor for this deliverable: CYB

Specific Targeted Research Project supported by the 7th Framework Programme of the EC

Dissemination level

PU Public X

PP Restricted to other programme participants (including Commission Services)

RE Restricted to a group specified by the consortium (including Commission Services)

CO Confidential, only for members of the consortium (including Commission Services)

Executive Summary:
Advances in SMC techniques

This document summarizes deliverable D2.2.3 of project FP7-284731 (UaESMC), a Specific Targeted Re-
search Project supported by the 7th Framework Programme of the EC within the FET-Open (Future and
Emerging Technologies) scheme. Full information on this project, including the contents of this deliverable,
is available online at http://www.usable-security.eu.

The report contains an overview of the results of the last period of UaESMC, pertaining to secure
multiparty computation techniques. The studies of these techniques have been directed by the example
problems selected during the first year, as well as by the desire to have a comprehensive framework of
privacy-preserving computation techniques by the end of the project. In this deliverable, we report of the
following findings and advances:

• We give protocols for solving systems of linear equations in privacy-preserving manner. Our protocols
constitute a nice example of adapting existing algorithms for running on private (secret-shared) data.

• On the other hand, we show that certain transformation-based techniques cannot in general give us
privacy-preserving protocols for solving linear equation systems. The situation here is more complex
than for linear programming, though, and for certain sets of possible systems of equations, some
transformation-based methods may have acceptable privacy guarantees and good performance.

• We provide a novel protocol transformation that turns any passively secure multiparty computation
protocol with honest majority to a protocol where any misbehaviour is detected after the execution.
Our transformation is significantly more efficient than the one we’ve proposed in the previous reporting
period. It is also more widely applicable, including protocols over rings, not fields. Hence it can be
applied to the protocols of Sharemind.

• We show how the security property for SMC protocols can be decomposed into several ones, one of
which is privacy. We show that privacy is also composable and aiming for this property only can give
us more efficient SMC protocols. We also show that security can be recovered by composing a private
protocol with a simple secure protocol.

• We give protocols for obliviously reading many elements of a private vector in parallel, and for oblivi-
ously writing many values into a private vector in parallel. Our protocols are more efficient than the
existing implementations of Oblivious RAM (ORAM) on top of SMC. Our protocols allow any efficient
algorithm for the Parallel Random Access Machine (PRAM) to be transformed to a privacy-preserving
computation, as long as the control flow of that algorithm does not depend on private data.

List of Authors

Liina Kamm (CYB)
Peeter Laud (CYB)
Alisa Pankova (CYB)
Pille Pullonen (CYB)

2

http://www.usable-security.eu

Contents

1 Introduction 5

2 Privacy-preserving Solving of Systems of Linear Equations 6

2.1 Adaptations of Numeric Methods to SMC . 6

2.2 Transformation-based Solution Methods . 10

2.2.1 Problem Statement . 10

2.2.2 Security Definition . 10

2.2.3 Our Results . 11

2.2.4 Working Constructions . 12

2.3 Conclusion . 14

3 From Private to Secure SMC Primitives 15

3.1 Security definitions . 15

3.2 Composability . 15

3.3 Input Privacy . 16

3.4 Security of the Composed Protocols . 17

3.5 Conclusion . 17

4 Verifiable SMC through Preprocessing 18

4.1 Initial Settings . 18

4.2 Verifying Basic Gate Operations . 18

4.3 Assumptions . 19

4.4 Protocol Outline . 19

4.5 Conclusion . 20

5 Privacy-preserving Parallel Array Access 21

5.1 Required lower-level protocols . 21

5.2 Protocol for reading . 22

5.3 Protocol for writing . 23

5.4 Oblivious Extended Permutations . 23

5.5 Discussion . 24

Bibliography 26

A Rmind: a tool for cryptographically secure statistical analysis 29

B Transformation-Based Outsourcing of Linear Equation Systems over Real Numbers 70

C Preprocessing-Based Verification of Multiparty Protocols with Honest Majority 94

D Composable Oblivious Extended Permutations 113

3

UaESMC Deliverable D2.2.3 Advances in SMC techniques

E Parallel Oblivious Array Access for Secure Multiparty Computation and Privacy-Preserving
Minimum Spanning Trees 130

F From Input Private to Universally Composable Secure Multi-party Computation Prim-
itives 149

4

Chapter 1

Introduction

This report gives an overview of the advances in secure multiparty computation techniques made during
the last period of the UaESMC project. We have investigated several different tasks and problems, mak-
ing progress in solving particular classes of computational problems, as well as in improving the security
guarantees of broad classes of protocols. Our investigations have been motivated by the example problems
selected during the first year of UaESMC [3]. Even more, they have been motivated by the desire to have a
comprehensive set of techniques available for the UaESMC framework. We find that our progress during the
last period has gone a long way towards removing the existing gaps in the applicability of SMC to particular
kinds of problems.

In the last reporting period, two of our research lines have converged on a particular problem, namely
the privacy-preserving solution of systems of linear equations. This problem has to be solved for certain
questions in privacy-preserving statistics, e.g. for linear regression. On the other hand, after showing the
likely non-existence of transformation-based methods for privacy-preserving linear programming, we turned
our attention to this seemingly more basic problem, which would also be useful in certain privacy-preserving
algorithms for LP. We report both the possibility and the impossibility results in Chapter 2 of this report. We
also note that both privacy-preserving statistics and optimization have been selected as example problems
at the beginning of UaESMC [3].

We have studied the relationships between different properties of SMC protocols, and how to efficiently
turn a protocol satisfying a weaker property into one that satisfies a stronger one. We have shown that
the usual definition of security against passive adversaries is not the most primitive one, and a more basic
property — privacy — is the one that the designers of SMC protocols should aim towards. We discuss these
details in Chapter 3. Moving forward from protocols secure against passive adversaries, we have shown how
to transform them in a way that any misbehaviours by adversarially controlled parties will be detected after
the end of the protocol. We have proposed something similar during the previous reporting period, but the
transformation we describe in Chapter 4 is both more efficient and more widely applicable. In particular, it
applies directly to the three-party protocol set of Sharemind, secure against one passively corrupted party.

At the end of the previous reporting period, we identified a number of gaps [2] in the state of the
art of SMC protocols, that may negatively influence our ability to translate efficient algorithms into SMC
protocols. One of the gaps was on accessing data according to addresses that were themselves private.
The existing methods were based on implementing the protocols for Oblivious RAM on top of secure
multiparty computation. These methods had a number of problems, including the conceptual complexity,
computational complexity and parallelizability. In Chapter 5 we report on a set of protocols that we have
developed for oblivious data accesses that significantly improve in all these aspects. The protocols are
simpler, their overheads are smaller, and they are naturally expected to run many instances in parallel,
which goes along well with the secret-sharing based SMC protocol sets employed by Sharemind and also
other SMC frameworks. The method is applicable for many different computational problems, the examples
of which can be seen also in deliverable D4.2.2 [18].

5

Chapter 2

Privacy-preserving Solving of Systems of
Linear Equations

A system of linear equations over a field F with k equations and k unknowns is specified by a k × k matrix
A and a (column) vector ~b of length k, with entries from F. To solve the system means to find a vector
~x ∈ Fk, such that A · ~x = ~b. In non-degenerate case, there is exactly one ~x satisfying this equation.

If a SMC protocol set is based on secret sharing over some finite field F, then it is generally easy to solve
systems of linear equations over this F [13]. Often we are interested in solving the systems of equations over
the field R instead. In this chapter we present certain methods for doing it, as well as discuss approaches
that are likely not going to work.

In existing SMC frameworks, e.g. Sharemind, the private values, belonging to R, can be expressed (with
finite precision) either as fixed- or floating-point numbers. There exist protocols for performing arithmetic
operations with values expressed like this, as well as for invoking elementary functions on them. Our
protocols for solving systems of linear equations call these lower-level protocols as subroutines.

In the following, the representation of private values is denoted by J·K. For any v, the write-up JvK
denotes that v has been shared among the computing parties in the SMC framework.

2.1 Adaptations of Numeric Methods to SMC

In [6, Sec. 6] (attached to the deliverable) we show how the methods of Gaussian elimination and LU
decomposition can be adapted to run on top of a SMC framework. In the following, we give an overview of
the adaptions. The goal of the SMC protocols based on these algorithms is to find J~xK, given JAK and J~bK.

Both methods make use of pivoting that should take place around an element with the largest absolute
value, in order to minimize numerical instabilities. Alg. 1 describes the function maxLoc that finds the
pivot element and its location from a given vector of private values. To avoid leaking information about
equal values in a vector, the indices are first permuted to ensure cryptographic privacy. This means that the
indices are traversed in random order during each execution. On line 4, the current maximum element is
compared with the element that is being viewed. On lines 5 and 6 the value and its location are determined
obliviously. Namely, if the new element is larger, it will be considered the new maximum element and its
location will be recorded based on the same comparison result. In case of several maximum elements, it
returns the location of one of these elements.

Of the two algorithms for solving a system of linear equations, let us first look more closely at Gaussian
elimination with back substitution. Alg. 2 gives the privacy-preserving version of the Gaussian elimination
algorithm.

At the start of the algorithm (line 2), the rows of the input matrix JAK are shuffled along with the
elements of the dependent variable vector that have been copied to J~xK, retaining the relations. On lines 5-
11, the pivot element is located from the remaining matrix rows and then the rows are interchanged so that
the one with the pivot element becomes the current row. Note that as all the matrix indices are public,

6

UaESMC Deliverable D2.2.3 Advances in SMC techniques

Algorithm 1: maxLoc: Finding the first maximum element and its location in a vector in a privacy-
preserving setting.

Data: A vector J~aK of length n.
Result: The maximum element JbK and its location JlK in the vector.

1 Let π(j) be a permutation of indices j ∈ {1, . . . , n}
2 JbK← J~aπ(1)K and JlK← π(1)

3 for i = π(2) to π(n) do
4 JcK← (|J~aπ(i)K| > |JbK|)
5 JbK← JbK− JcK · JbK + JcK · J~aπ(i)K
6 JlK← JlK− JcK · JlK + JcK · π(i)

7 return (JbK, JlK)

the conditionals work in the public setting. As we need to use the pivot element as the divisor, we need to
check whether it is 0. However, we do not want to reveal information about the location of this value, so on
line 12, we privately make a note of whether any of the pivot elements are 0, and on line 26, we finish the
algorithm early if we are dealing with a singular matrix. In Sharemind, division by 0 will not be reported
during privacy-preserving computations as this will reveal the divisor immediately.

On lines 15 - 18, elements on the pivot line are reduced. Similarly, on lines 19 - 24, elements below
the pivot line are reduced. Finally, on lines 27 - 29, back substitution is performed to get the values of the
coefficients.

The main difference between the original and the privacy-preserving Gaussian elimination algorithm
is actually in the maxLoc function. In the original version, elements are compared, one by one, to the
largest element so far and at the end of the subroutine, the greatest element and its location are found. Our
algorithm does the same, except that it uses oblivious choice instead of straightforward if-clauses. This way,
we are able to keep the largest element secret and only reveal its location at the end without finding out
other relationships between elements in the vector during the execution of this algorithm.

Let us now look at LU decomposition. In the ordinary setting, this method is faster than the Gaussian
elimination method. LU decomposition uses matrix decomposition to achieve this speed-up. If we can
decompose the input matrix into a lower and upper triangular matrix L and U, respectively, so that
L · U = A, we can use forward substitution and back substitution on these matrices, similarly to the
process we used in the Gaussian elimination method. Alg. 3 gives the privacy-preserving version of LU
decomposition. Note that the elements on the diagonal of the lower triangular matrix L are equal to 1.
Knowing this, L and U can be returned as one matrix so that the diagonal and the elements above it belong
to the upper triangular matrix U and the elements below the diagonal belong to the lower triangular matrix
L without losing any information.

Similarly to Alg. 2, first the pivot element is found using the maxLoc function. After the elements
are exchanged, the row permutations are saved for use in the algorithm in order to solve the set of linear
equations. As a result, the decomposition matrix and the permutations are returned. The permutations are
public information but they reveal nothing about the original dataset because the rows have been shuffled
before they are input into the decomposition algorithm similarly to what was done in Alg. 2.

Alg. 4 shows how to solve a set of linear equations using LU decomposition. The matrix rows are
shuffled as in Alg. 2 and the LU decomposition matrix is composed using the LUDecomp function. As an
additional result we receive the permutation that was done for pivoting purposes during the decomposition
phase. Next, on row 5, elements of vector J~bK containing the dependent variable are permuted to be in
concurrence with the permutations performed during the decomposition phase.

On lines 6 - 7, forward substitution is performed using the values from the lower triangular matrix.
Finally, on lines 8 - 9, back substitution is performed using the values from the upper triangular matrix.

7

UaESMC Deliverable D2.2.3 Advances in SMC techniques

Algorithm 2: Privacy-preserving Gaussian elimination with back substitution for a matrix equation
JAKJ~xK = J~bK.

Data: a k × k matrix JAK, a vector J~bK of k values.
Result: Vector J~xK of coefficients.

1 Let J~xK be a copy of J~bK
2 Obliviously shuffle JAK, J~xK retaining the dependencies
3 Let JcK← false privately store the failure flag during execution
4 for i = 1 to k − 1 do
5 Let J~mK be a subvector of JAu,vK such that u ∈ {i, . . . , k} , v = i
6 (JtK, JirowK)←maxLoc(J~mK)
7 irow ← declassify(JirowK) + i
8 if irow 6= i then
9 for j = 1 to k do

10 Exchange elements JAirow,jK and JAi,jK
11 Exchange element J~xirowK and J~xiK
12 JcK← JcK ∨ (JAi,iK = 0)
13 JpivinvK← JAi,iK−1

14 JAi,iK← 1
15 foreach j ∈ {1, . . . , k} do
16 if j 6= i then
17 JAi,jK← JAi,jK · JpivinvK
18 J~xiK← J~xiK · JpivinvK
19 for m = i+ 1 to k do
20 for j = 1 to k do
21 if j 6= i then
22 JAm,jK← JAm,jK− JAi,jK · JAm,iK
23 J~xmK← J~xmK− J~xiK · JAm,iK
24 JAm,iK← 0

25 if declassify(JcK) then
26 return ”Singular matrix”

27 J~xkK← J~xkK
JAk,kK

28 for i = k − 1 downto 1 do

29 J~xiK← J~xiK−
k∑

j=i+2
JAi,jK · J~xjK

30 return J~xK

8

UaESMC Deliverable D2.2.3 Advances in SMC techniques

Algorithm 3: LUDecomp: Privacy-preserving LU decomposition for a symmetric matrix JBK.
Data: a k × k matrix JBK.
Result: The LU decomposition matrix JBK and ~q containing the row permutations.

1 Let JcK← 0 be a Boolean value
2 for i = 1 to k do
3 Let J~mK be a subvector of JBu,vK such that u ∈ {i, . . . , k} , v = i
4 (JtK, JirowK)←maxLoc(J~mK)
5 irow ← declassify(JirowK)
6 if irow 6= i then
7 for j = 1 to k do
8 Exchange elements JBirow,jK and JBi,jK
9 JcK← JcK ∨ (JBi,iK = 0)

10 ~qi ← irow
11 JipivK← JBi,iK−1

12 for m = i+ 1 to k do
13 JBm,iK← JBm,iK · JipivK
14 for j = i+ 1 to k do
15 JBm,jK← JBm,jK− JBm,iK · JBi,jK

16 if declassify(JcK) then
17 return ”Singular matrix”

18 return (JBK, ~q)

Algorithm 4: Solving the linear regression task J~yK ≈ JXKJ~βK using the LU decomposition matrix in
a privacy-preserving setting.

Data: An n× k data matrix JXK and an n element response vector J~yK.
Result: A vector J~bK of coefficients.

1 Compute correlation matrix JAK← JXKT JXK
2 Compute new target vector J~bK← JXKT J~yK
3 Shuffle JAK, J~bK retaining the dependencies
4 (JBK, ~q)← LUDecomp(JAK)
5 Rearrange J~bK based on permutation ~q
6 for i = 2 to k do

7 J~biK← J~biK−
i∑

j=1
JBi,jK · J~bjK

8 for i = k downto 1 do

9 J~biK←
(

J~biK−
k∑

j=i+1
JBi,jK · J~bjK

)
· JBi,iK−1

10 return J~bK

9

UaESMC Deliverable D2.2.3 Advances in SMC techniques

2.2 Transformation-based Solution Methods

In deliverables D2.2.1 [4, Chap. 3.1] and D2.2.2 [5, Chap. 3] we have investigated linear programming (LP).
We have found that, at least using current approaches, achieving a good standard definition that guarantees
security is impossible for transformation-based outsourcing of LP tasks. In this chapter, we take a look
at linear equation systems. Hiding them should be conceptually simpler, and one can no longer perform
the geometric attacks that were proposed against LP in [5, Chap. 3]. Instead of hiding the entire feasible
region, we constrain our task to hiding just a single point, thus considering a linear equation system A~x = ~b
for a n × n full-rank matrix A. Nevertheless, it turns out that even in such simplified settings finding a
good transformation for linear equations over real numbers is challenging. We studied the class of affine
transformations for matrices over real numbers, found out which forms are possible at all, and stated some
properties that the transformation and the initial matrices must satisfy in order to make the initial matrices
perfectly (or statistically) indistinguishable after applying the transformation. Our work provides both
possibility and impossibility results.

2.2.1 Problem Statement

Our particular task is to solve a full-rank n × n system A~x = ~b. Since the most complex part of finding
~x = A−1~b is computing A−1 over R, and the consequent multiplication by ~b is relatively easy, the problem
can be reduced to outsourcing of a square matrix inverse computation.

Outsourcing matrix inverse over a finite field F is easy and can be done as follows. Matrix multiplication
is much easier than matrix inverse. Given an n × n invertible matrix A over F, the client generates a

random invertible matrix R
$← Fn×n. The product RA may now be published, and (RA)−1 computed

offline by any powerful solver. Knowing R, the result A−1 can be obtained from (RA)−1 = A−1R−1 as
A−1R−1 ·R. Since invertible n× n matrices over F form a multiplicative group GL(n,F), the product RA
is distributed uniformly in GL(n,F) for any A ∈ GL(n,F), so RA leaks no information about A. There do
exist algorithms for efficient sampling of (almost) uniformly distributed matrices over F. This fact entices
to try out something similar for matrices over real numbers.

2.2.2 Security Definition

We use the same secure transformation definition that we used for linear programming in [4, Chap. 3.1]
and [5, Chap. 3]. Let T ⊆ {0, 1}∗ denote the set of all possible tasks and S ⊆ {0, 1}∗ the set of all possible
solutions. For T ∈ T and S ∈ S let T � S denote that S is a solution for T . A problem transformation is
defined as a pair of functions F : T× {0, 1}∗ → T× {0, 1}∗ and G : S× {0, 1}∗ → S.

A correct problem transformation is a pair (F ,G) that satisfies

∀T, r, T ′, S′, s :
(
(T ′, s) = F(T ; r) ∧ T ′ � S′

)
⇒ T � G(S′, s) ,

where r is the randomness used by the transformation. For simplicity, let F(T) denote a randomized function
that first samples r and then runs F(T ; r). We assume that both F and G are polynomial-time with respect
to the task description size.

Some information may be intentionally leaked by the transformation, due to being impractical to hide.
This is captured by the notion of side information function Φ : T→ {0, 1}∗. When transforming a task T ,
we do not try to hide the information in Φ(T). For example, if T is not transformed at all, then Φ(T) = T .
The function Φ is assumed to be polynomial-time.

Definition 2.2.1. A transformation (F ,G) for T is (computationally) Φ-private if the advantage of any
probabilistic polynomial-time adversary B = (B1,B2) is a negligible function of η in the following experiment

10

UaESMC Deliverable D2.2.3 Advances in SMC techniques

ExpT,Φ
B :

(T0, T1, s)← B1(η)
if |T0| 6= η ∨ |T1| 6= η ∨ Φ(T0) 6= Φ(T1)

return ⊥
b

$← {0, 1}
(T ′,)← F(Tb)
b′ ← B2(T ′, s)

return (b
?
= b′)

where the advantage of the adversary is 1/2 less the probability of the experiment returning true.

In the following, we work with real numbers, hence it may be unclear what it means for a probabilistic
polynomial-time algorithm to process these numbers. Nevertheless, we can define perfect and statistical Φ-
privacy, by letting B1 and B2 be any functions and, in case of perfect privacy, require the advantage of B to
be 0. For a fixed η, we say that the transformation provides at least σ bits of security, if the advantage of B
is at most 2−σ. This level of security is achieved iff SD(T ′0, T

′
1) ≤ 2−σ for all T0, T1 ∈ T with Φ(T0) = Φ(T1)

and |T0| = |T1| = η, where T ′0 and T ′1 are the first components of F(T0) and F(T1) respectively. Typically,
we want the security level to be at least ηc for some constant c > 0.

In our case, the set of tasks T corresponds to a set A of n × n invertible matrices. The set A depends
on the application in which the matrix inversion problem appears; it is quite likely that A is not the
whole GL(n,R). It may be possible that for some applications involving the inversion of matrices, privacy-
preserving outsourcing via transformation is possible, while other applications must use other means of
inverting matrices.

2.2.3 Our Results

In our work, we have studied transformations of the form F(A) = PAQ + R (affine transformations) for
A ∈ Rn×n, P ∈ Rm×n, Q ∈ Rn×m, R ∈ Rm×m. For this, we achieved both positive and negative results.

First, we have shown that, since the computation of A−1 = G(B−1) should be efficient (and hence
B should be easier to compute than A−1), the most general type of affine transformation is of the form

A 7→ P

(
A 0
0 I

)
Q. Since matrix determinant is multiplicative, det

(
P

(
A 0
0 I

)
Q

)
= det P ·det A ·det Q,

and we can immediately see that only matrices with the same determinant absolute values can be perfectly
indistinguishable. If we want to achieve statistical indistinguishability for arbitrary A1 and A2, the entries
of P and Q grow in Ω(|det A1/ det A2|2η) for a security parameter η. This is similar to hiding a real
number multiplying it by another random real number (the case of (1×1) matrix), where a ∈ R and −a ∈ R
can be indeed made perfectly indistinguishable multiplying them by a random number r coming from any
symmetric distribution. However, for matrices of higher dimensions, there exist matrices that have the same
determinants, but are still quite distinguishable for any distribution of random matrices P and Q.

If we try to limit hiding to just multiplication by P with bounded operator `2 norms (in this case,
sampling of P would be easier to define), which works well in matrices over finite fields, being able to
achieve perfect secrecy implies that we should be able to sample uniformly from a certain group G that
depends on the set of matrices A that we want to hide. According to known facts about the properties of
groups, if we can sample from a group uniformly, this group is conjugate to an orthogonal group O(n,R)
(matrices U such that UT = U−1), and hence the inverse of any G ∈ G can be obtained just by transposing
G, without needing any outsourcing. The set of matrices A is related to G in such a way that inverting the
elements of G make it easy to invert the elements of A. In other words, if we know the distribution of P
that would hide A well, we could invert A more easily by other means, without needing outsourcing at all.

If we use a more general transformation F(A) = PAQ with bounded `2 operator norms for hiding,
then we should be able to sample uniformly from A. This point is the gap between the possibility and
impossibility results: although we have found examples of A that PAQ can hide, but PA cannot, it still
does not mean that there does not exist an easier algorithm for inverting the elements of such A.

11

UaESMC Deliverable D2.2.3 Advances in SMC techniques

If we are using matrices P and Q with unbounded `2 operator norms, then we can still achieve statistical
security. Some working constructions are given in Sec. 2.2.4.

Although we finally have found some possibility results, they all unfortunately still leak the determinant,
unless the entries of P and Q grow in Ω(c2η) where c is the maximal ratio absolute value of different
determinants. This is not what we would like to get in practice.

A summary of our findings is depicted in Fig. 2.1. The technical details can be found in [27], which is
also included in Appendix B.

2.2.4 Working Constructions

Our general impossibility results hold for matrices with bounded `2-norm, which immediately discard perfect
hiding, but still leave hope for statistical hiding. In this section, we present some possibility results.

2.2.4.1 Hiding triangular matrices by B = PA

We have shown in [27] that, using B = PA, we cannot perfectly hide matrices with eigenvalues λ 6= ±1.
Moreover, it extends to statistical hiding: although theoretically it is possible, the sizes of entries would
grow too large. Nevertheless, we propose some hiding for matrices with eigenvalues λ = ±1.

Let A be a lower triangular matrix with aii = ±1 (this is exactly the case when we have λ = ±1 for
each eigenvalue λ of A). Let P = (~p1| . . . |~pn). Due to triangularity of A, We can write PA = (a11~p1 + · · ·+
an1~pn| . . . |an−1,n−1~pn−1 + an,n−1~pn, ann~pn). Since ann = 1, the last vector of PA does not depend on A.

We see that, starting from an arbitrary ~pn, we can generate ~pi in such a way that it hides ~pi+1. Namely,
if the entries of ~pn are bounded by 1 (which is the least possible bound), let the entries of ~pn−1 be uniformly
distributed between 0 and c · 2η, where c ≥ |an,n−1|. In this way, an−1,n−1~pn−1 + an,n−1~pn statistically hides
~pn with at least η bits of security. On the next step, to hide the (n − 2)-th column with at least η bits of
security, we have to sample the entries of ~pn−2 uniformly from between 0 and c(2η + 22η), where c is an
upper bound for both |an,n−2| and |an−1,n−2|. Proceeding to ~p1, we get that its entries should be sampled
uniformly from between 0 and c(2η + 22η + · · ·+ 2(n−1)η), where c is an upper bound for the absolute values
of all entries in the first column of A.

The preceding discussion shows that in order to statistically hide matrices from a set A satisfying the
following:

• a matrix A ∈ A is lower triangular with the main diagonal containing only the values ±1;

• the absolute values of the entries of the matrices in A are bounded by c;

Since lower triangular matrices can be inverted much more easily than general matrices, it does not make
any practical sense to outsource it like that. Nevertheless, we can use this hiding as a building block for
more general matrices, as we show in the next section.

2.2.4.2 Hiding based on QR-decomposition

Let A be an arbitrary set of n× n matrices with bounded entries, and determinant ±1. Any matrix can be
represented as A = QARA, where QA ∈ O(n,R) and RA is an upper triangular matrix with positive entries
on the diagonal (such a decomposition is unique). Note that |QA| = 1 in any case. We put the following
further restrictions on A:

• there exists c ∈ R that upper bounds the absolute values of the entries of RA for any A ∈ A;

• the entries on the main diagonal of RA are ±1.

Taking DP from Sec. 2.2.4.1, we may now take D(P,Q) = {(U,PT) | U
$← O(n,R),P ← DP }. The dis-

tribution D(P,Q) statistically hides A, because for any A ∈ A, the matrix UQA is a uniformly distributed

orthogonal matrix, and the product RAPT statistically hides RA.

12

UaESMC Deliverable D2.2.3 Advances in SMC techniques

The most general affine transformation

Possibility results

(QR, LU, SVD,

eigendecomposition)

based on matrix decomposition

Perfect Security Statistical Security

A – the set of n× n matrices over R to hide

Affine transformation B = PAQ + R

P ∈ Rm×n Q ∈ Rn×m R ∈ Rm×m

Sampling from P and Q must be efficient

∀Ai,Aj ∈ A : |Ai| = ±|Aj|

Without loss of generality, I ∈ A

m ≥ n

Transformation B = f(A)

B ∈ Rm×n

choose a particular class
of affine transformations

The entries of P and Q cannot be iid

=⇒ determinants are bounded
The entries of P and Q are bounded

=⇒ norms are bounded

B−1 should be helpful in computing A−1

B = P

(
A 0
0 I

)
Q

P ∈ GL(m,R) Q ∈ GL(m,R)

B = PAQ

B = PA

(P,Q)

- A is conjugate to O(n,R)

- no outsourcing is needed

for certain classes of A

* 〈A〉 admits uniform distribution

* P belongs to a coset of 〈A〉

* 〈A〉 is conjugate to O(n,R)

* A admits uniform distribution

* if A is a group then

A

Figure 2.1: Possibility and impossibility results for outsourcing the inversion of real matrices in a set A with
help of affine transformations

13

UaESMC Deliverable D2.2.3 Advances in SMC techniques

There exist algorithms that allow to sample uniformly from O(n,R). Even if the secure implementation
of these sampling algorithms is inefficient, the proposed hiding method can be useful at least in SMC setting.
Indeed, in this setting, a random orthogonal matrix can be generated simply by each computing party locally,
generating a random orthogonal matrix, entering it into the computation, and multiplying these matrices
using SMC protocols.

Similar hiding constructions are based on other well-known matrix decompositions (LU,SVD, eigende-
composition), see [27] for details. Unfortunately, they are not generalizable to an arbitrary set A, even
assuming ∀A ∈ A : det A = ±1, and setting constraints on eigenvalues or singular values is also necessary.

2.3 Conclusion

We see that the most general methods that we have for solving linear equation systems are based on Gaussian
elimination or on some decomposition-based method. The applicability of transformation-based methods is
subject to further study. We note that there are also generic transformation-based methods. These involve
scaling up the coefficients of the equations, such that they become integers. These can be embedded in
a sufficiently large finite field, and the resulting system can be solved. The field must be large enough to
contain the square of the determinant of any submatrix of the system of equations. Hence the field will
quickly grow very large and it is unclear if any performance benefit can be obtained from such an approach.

14

Chapter 3

From Private to Secure SMC Primitives

Secure multi-party computation protocols for practical functionalities are built from small protocols that
correspond to common arithmetic or boolean operations. Hence, to claim that the resulting functionalities
are secure, we require security and composability of the component protocols. This chapter explores the
properties that the core protocols have to provide in order to be suitable as efficient building blocks for large
functionalities with passive security. Traditional composability notions are too restrictive for secret sharing
based secure computation and using them directly yields protocols with suboptimal behaviour or results in
settings where it is hard to manage a large set of protocols. We propose a new input privacy notion that
is sufficient for protocols that output secret shared elements and allows for more efficient protocols. The
idea of this chapter is to give an intuitive introduction to the necessary building blocks and choices, full
formalization of the introduced ideas can be found in [7].

3.1 Security definitions

Security of secure multi-party computation protocols is defined by specifying an ideal functionality. The
ideal functionality or a trusted third party is a secure environment where all parties can input their secret
inputs and that only gives out the desired result. This corresponds to the best case scenario where each
party only sees its own inputs and the final output of the computation. In case any other special behaviour
is desired, the ideal functionality can be tweaked to accommodate for this as well. For a real protocol, the
ideal functionality is a specification of the desired properties for both correctness and security. A protocol is
secure if no adversary can efficiently distinguish whether it is interacting with other parties in a real protocol
or with a simulator and the ideal functionality. The simulator is necessary because the parties in the real
protocol exchange messages that are not present in the ideal functionality setting and the simulator has to
create these messages based on the information available in the ideal world setting.

A secure ideal functionality of a secure multi-party protocol that operates on secret shares is a machine
that gets the shared values as an input, restores the input values and computes the output in plain. In the
end it shares the output and gives the resulting shares back. The important part in such specification is
that there is no connection between the value of party’s input shares and the output share.

3.2 Composability

A secure protocol is said to be composable if it retains its security properties when executed in arbitrary com-
bination with other computations. The most commonly used formalism of protocol composition is universal
composability (UC) [8] which is very broad and allows to encompass different cryptographic functionalities.
However, our work relies on the reactive simulatability (RSIM) formalism [31] that is less expressive than
UC in general, but allows to easily describe SMC functionalities. Notably, all of the control over network
scheduling is given to the adversary, but otherwise the channels are secure and authenticated. As usual,
security is defined by comparing the ideal world specification to the actual real world protocol.

15

UaESMC Deliverable D2.2.3 Advances in SMC techniques

A common approach of a protocol designer would be to make all core protocols secure under composition
and then combine them arbitrarily for larger functionalities. However, in the following we define an input
privacy property that is weaker than security but is sufficient for most core protocols in secure computation
and allows for more efficient protocols. Our approach on one hand seemingly contradicts the common
arithmetic black box (ABB) [11] approach of formalizing security of SMC but can also be seen as an extra
layer to prove that a set of proposed real world protocols implement the ABB without the need to always
consider all protocols together. Similarly to the ABB model, we also obtain a setting where an ideal
functionality of a composed protocol is a single unit. As a benefit, input private protocols can be more
efficient than their secure counterparts and providing proofs of input privacy is often easier.

The core of our result is the formalization of ordered composition where the ordering is defined with
respect to data dependency and not necessarily the time of execution. Hence, our definition is complementary
to the existing composability definitions that proposes additional restrictions but can be used in combination
with previous definitions. We aim for universally composable protocols with ordered composition.

Definition 3.2.1. (Ordered and fully ordered composition) Two protocols P1 and P2 are in ordered compo-
sition P1 → P2 if there is no data-flow from P2 to P1. The ordered composition is fully ordered if all the
outputs of P1 are inputs to P2 and not used elsewhere.

This formalism is necessary to enforce the requirement that only intermediate values of the composed
protocol are allowed to be less secure than required by the traditional UC security definition. Especially,
we need to establish a special role for the last protocol that provides the outputs of the computation and
therefore has to enforce more guarantees. As the main result, we show that the fully ordered composition
of an input private and a secure protocol is secure in the passive model, provided that all outputs of the
composed protocol are produced by the secure protocol. In addition, it is important to note that a suitable
ordering of the protocols in arithmetic or boolean circuit can always be found based on the topological order
as such circuits are acyclic directed graphs.

3.3 Input Privacy

A protocol is input private if all that a party learns could be deduced from its inputs. The respective ideally
private functionality is such that only allows party to see its input. Essentially, the difference between
proving the two properties is that in case of security the simulation uses inputs and outputs of the corrupted
parties whereas in case of privacy we only use the inputs. Hence, it captures the idea that adversary sees
nothing other than its own inputs, with a special focus on keeping the inputs of other parties hidden.

Intuitively, input privacy property guarantees that the secret inputs of honest parties remain classified
throughout the computation. Particularly, this restricts the notion to apply only to protocols that do not
provide a public output that depends on the inputs. However, in case of secret sharing, each party has a
share as output and this share on its own does not give any information about the value of the output nor
the inputs. Hence, we can consider input privacy as a desired property for protocols that output shared
elements. Security is still required in case any output is made public. In general, secure functionality may
not be input private, nonetheless, any secure secret sharing based protocol that outputs shared elements is
also input private thanks to the security of the sharing scheme.

Input privacy is a weaker notion than security with respect to integrity and confidentiality of the outputs.
Especially, an adversary may be able to control the outputs or just learn them as long as this does not reveal
the inputs. However, the main vulnerability is that using private outputs without care in the following
protocols might leak information about the inputs. Nonetheless, we show that a combination with other
input private protocols gives an input private composition and finishing this combination with a secure
protocol results in a secure composed protocol.

16

UaESMC Deliverable D2.2.3 Advances in SMC techniques

3.4 Security of the Composed Protocols

A key aspect to meaningfully combine secure and input private protocols is to ensure the correctness of the
input private part of the composition as correctness is required from secure composition. However, it can
be relaxed when secure finalizing protocols do not use the outputs of the private part. On the other hand,
secure final protocol has to be restricted not to reveal too much information about its input shares. These
requirements are formalized in notions called output predictability and joint output predictability.

Informally, a composition is said to be output predictable if there exists a predictor that based on the
inputs of the composition can produce equivalent outputs. However, these have to be indistinguishable from
the outputs of the real composition in a setting where the adversary observes the run of the composition
but not the outputs of the predictor. Moreover, a composition of the real input private protocol and secure
ideal functionality and the composition of both ideal functionalities are required to have the same predictor
for jointly predictable outcome. Joint predictability is required in order to ensure that the private protocol
is correct with respect to its ideal specification. The most commonly used composition contains any correct
deterministic private functionality finished by a secure resharing protocol and such composition is always
jointly output predictable. In general, for deterministic functionalities, correctness and output predictability
imply joint output predictability and therefore this does not introduce significant difficulties to the proof.

The informal statements of the two main theorems that ensure the security of the proposed proof
framework are as follows.

Theorem 3.4.1. A fully ordered composition of input private and secure protocol with jointly predictable
outcome where all outcomes result from secure protocol is secure.

Theorem 3.4.2. An ordered composition of input private protocols is input private.

These results ensure that it is allowed to combine private protocols and that secure protocols are only
required in the end of the computation. Commonly security is needed for resharing just before publishing or
storing the outcome. The efficiency gain of this approach is significant for protocols with many intermediate
steps that would otherwise need resharing after many components. In addition, composition of private
protocols into a large private protocol is no harder to achieve than secure composition.

3.5 Conclusion

This chapter suggested that it is possible to use input private protocols instead of secure protocols in SMC.
Furthermore, combining them together results in an input private protocol meaning that input privacy is a
composable property. However, most importantly, input privacy as an intermediate goal does not give any
penalties as computation can be finished by a secure protocol to turn it into a composable secure protocol
that can be used in arbitrary combinations with other protocols. Current work does not consider active
security which adds more complexity to formalizing and proving output predictability.

The work described in this chapter appears in all details in paper [7] and is also included as Appendix F
of this document.

17

Chapter 4

Verifiable SMC through Preprocessing

In this chapter we consider verifiable SMC. Instead of using a protocol secure against active adversary, one
may use a more efficient protocol secure against passive adversary, and at the end of the computation check
which parties have followed the protocol and which have not. Such verification makes sense if the majority
of parties are honest, and this approach may be more efficient than actively secure SMC protocols.

In [5, Chap.5], we have reported on the verification mechanism based on linear probabilistically checkable
proofs [25]. We have now found that preprocessing can significantly speed up and conceptually simplify the
verification. Our new results are presented in this chapter. The full description of our work can be found
in [26], which is also included in Appendix C.

Similarly to [5, Chap.5], in this chapter we present a transformation that allows to convert a protocol
secure against a passive adversary to a protocol secure against a covert adversary (one that acts as active
as far as the probability of being caught is non-negligible).

4.1 Initial Settings

There are n parties, at most t < n/2 of whom are corrupted. The protocol has r rounds, where the `-th
round computations of the party Pi, the results of which are sent to the party Pj , are given by an arithmetic
circuit C`ij over rings Z2n1 , . . . ,Z2nK (ni < nj for i < j). We define the following gates for such a circuit:

• The operations + (addition) and ∗ (multiplication) over rings Z2n1 , . . . ,Z2nK .

• The operations trunc and zext are between rings. Let x ∈ Z2nx , y ∈ Z2ny , nx < ny.

– x = trunc(y) computes x = y mod 2nx , going from a larger ring to a smaller ring.

– y = zext(x) takes x and uses exactly the same value y = x in Z2ny . This can be treated as taking
the nx bits of x and extending them with zero bits to ny bits.

• The operation bits from an arbitrary ring Z2n to (Z2)n performs a bit decomposition. Although bit
decomposition can be performed by other means, we introduce a separate operation, as it is reasonable
to implement a faster verification for it.

More explicit gate types can be added to the circuit, but the ones presented here are sufficient for any
computation, and adding verification for more gate types is quite straightforward.

4.2 Verifying Basic Gate Operations

Formally, the gate operations of Sec. 4.1 are verified as follows.

18

UaESMC Deliverable D2.2.3 Advances in SMC techniques

1. The bit decomposition operation (z0, . . . , zn−1) := bits(z):
check z = z0 + z1 · 2 + · · ·+ zn−1 · 2n−1;
check ∀j : zj ∈ {0, 1}.

2. The transition from Z2m to a smaller ring Z2n : z := trunc(x):
check z = x mod 2n (where mod can be computed locally since 2n divides 2m).

3. The transition from Z2n to a larger ring Z2m : z := zext(x):
compute locally the shares of y := trunc(z) from z;
check x = y;
check z = z0 + z1 · 2 + . . .+ zn−1 · 2n−1;
check ∀j : zj ∈ {0, 1}.

In this way, all the ring-specific operations have been reduced to computing linear combinations, mod
operations, and equality checks. After all the inputs and the outputs of the circuit are shared amongst
the verifiers (the way in which it is done is a part of our protocol), the linear combinations and mod
operations can be computed locally on shares. The equalities may be verified afterwards succinctly in
parallel. However, the initial circuit may still contain some multiplication gates that cannot be computed
locally and hence would provide a large computational overhead for the verifiers. We would like to get rid
of all the multiplications, and we do it using Beaver triples (preshared triples of random ring elements rx,
ry, rxy such that rx ∗ ry = rxy). For example, if we want to multiply x∗y, and a triple (rx, ry, rxy) is already
precomputed and preshared, we may first compute and publish x′ := x− rx and y′ := y− ry (x′ and y′ leak
no information about x and y), and then compute the linear combination x ∗ y = (x′ + rx) ∗ (y′ + ry) =
x′y′ + rxy

′ + x′ry + rxry = x′y′ + rxy
′ + x′ry + rxy.

For each multiplication gate of C`ij , a Beaver triple is generated in the corresponding ring. The triple is
known by the prover, and is also shared amongst the verifiers. The verifiers may use these shared triples
to make the multiplication local. The ordinary use of Beaver triples [12, 9, 1] requires declassifying two
ring elements x′ and y′ for each multiplication, which in our case be done in one round once for the entire
computation since all these values are known by the prover already before the verification starts.

4.3 Assumptions

Our verification uses the following assumptions:

• Secure point-to-point channels between each pair of parties.

• Broadcast channels between subsets of parties.

• Functionality that allows to prove to third parties which messages one received during the protocol,
and to further transfer such revealed messages. We use the same solution as in [5, Chap.5].

• Functionality that generates shared randomness and Beaver triples in the preprocessing phase (a
possible implementation of this functionality that uses honest majority assumption is given in [26]).

4.4 Protocol Outline

The protocol Πvmpc implementing Fvmpc consists of n machines M1, . . . ,Mn doing the work of parties
P1, . . . , Pn, and the underlying transmission and randomness generation functionalities. The internal state
of each Mi contains a bit-vector mlci of length n where Mi marks which other parties are acting maliciously.
Some t of n parties are assigned to be verifiers, and the set of such parties is denoted by V. The goal of the
prover is to prove its honestness to each subset of (t+ 1) verifiers (the number of proofs is thus exponential
in the number of parties). Due to the honest majority assumption, at least one of these subsets consists
only of honest provers. The proof is accepted iff all the verifier subsets accept the proof.

19

UaESMC Deliverable D2.2.3 Advances in SMC techniques

The protocol Πvmpc runs in six phases: preprocessing, initialization, execution, message commitment,
verification, and accusation. For simplicity, we describe each phase as it is defined for one proof (for one
fixed set V). These phases are exactly the same for all the subsets of t′ := t+ 1 verifiers, sharing no unique
randomness, and hence they can be treated as independent proofs.

Preprocessing. This is a completely offline preprocessing phase that can be performed before any
inputs are known. For each multiplication gate of C`ij , a Beaver triple is constructed and shared amongst
the verifier set. The randomness vectors ri used in the initial protocol is also shared amongst the verifiers.

Initialization. In the initialization phase, the inputs xi are committed. The consistency of input shares
is not verified, since using inconsistent shares would only make the prover’s own life more difficult.

Execution. The parties run the original protocol as before, just using underlying transmission func-
tionality. If any party starts misbehaving straightforwardly, then the transmission functionality forces the
parties to go directly to the accusation phase.

Message commitment. All the n parties finally commit their sent messages c`ij for each round ` ∈ [r′]

by sharing them to c`kij and sending these shares to the other parties. Let v`ij = (xi‖ri‖c1
1i‖ · · · ‖c`−1

ni ‖c`ij) be

the vector of inputs and outputs to the circuit C`ij that Mi uses to compute the `-th message to Mj . After

this phase, Mi has shared v`ij among the t′ verifier parties. Let v`kij be the share of v`ij given to machine Mk.
The proving party now also publishes all the public Beaver triple communication values that are needed

to eliminate the multiplications and make the verification one-round. The triples that are not related to
communication are not a part of message commitment, and they are published separately.

Verification phase. The proving party publishes all the remaining public Beaver triple values, and
also a certain number of bits z`kij for each zext, trunc, and bits operation. Each verifier Mk computes the

prover’s circuit on its local shares v`kij and z`kij . Due to preshared Beaver triples, the computation of addition
and multiplication gates is local, and, hence, communication between the verifiers is not needed.

The correctness of operations (z1, . . . , zne) := bits(z), z = zext(x), and z = trunc(x) is verified as shown
in Sec. 4.2. The condition ∀j : zj ∈ {0, 1} can be verified as z2

j = zj (which in turn requires a Beaver triple

for computing z2
j), but there is also another more efficient method for this (see [26] for details). Now, only

checks of the form x − y = 0 and z0 + z1 · 2 + . . . + zne−1 · 2ne−1 − z = 0 are left. Such checks are just
linear combinations of the shared values. Since the parties cannot verify locally if the shared value is 0, they
postpone these checks to the last round.

For each Beaver triple, the prover has published x′ = (x − rx) and y′ = (y − ry), but the verifiers have
no reason to trust him. The checks x− x′ − rx = 0 and y − y′ − ry = 0 are also postponed.

Finally, the verifiers come up with the shares c̄`kij of the values c̄`ij that should be the outputs of the

circuits. The verifiers have to check c`ij − c̄`ij = 0.
In general, the verifies have a set the linear combinations A1x1 = 0, . . . , AKxK = 0, where Aixi = 0

has to be checked in Z2ni . The shares of dki := Aix
k
i are computed locally. If the prover is honest, then the

vectors dki are just shares of a zero vector and, hence, can be revealed without leaking any information.
If the total number of parties is 3, then there is a single verifying set of 2 verifiers. They want to check

if 0 = di = d1
i + d2

i , which is equivalent to checking whether d1
i = −d2

i . For this, take a collision-resistant
hash function and publish h`1ij := h((d1

1‖ . . . ‖d1
K)) and h`2ij := h(−(d2

1‖ . . . ‖d2
K)). Check h`1ij = h`2ij .

Accusation. Finally, each party outputs the set of parties that it considers malicious.
The formal UC proof for the real functionality can be found in [26].

4.5 Conclusion

We have proposed a scheme that allows to verify the computation of each party in a passively secure protocol,
thus converting passive security to covert security. Using preprocessing phase, this scheme is more efficient
than the one proposed in [5], especially for 3-party computation.

Similarly to [5], we could require each party to prove the correctness after each round. If implemented
straightforwardly, repeating our verification algorithm on each round, it multiplies the verification complexity
by the number of rounds. This would increase the total number of rounds, but not the total communication.

20

Chapter 5

Privacy-preserving Parallel Array Access

Many algorithms that we may wish to implement in a privacy-preserving manner make use of arrays, which
they access according to non-trivial access patterns — patterns, which are not known during compile-time,
but may depend on the data the algorithm operates on. In a privacy-preserving implementation, the index,
according to which the array is accessed, may itself need to be private. Accessing an array according to
a private index is a complex operation, and a naive implementation has the overhead proportional to the
length of the array, as it touches all elements of the array to make the exclusion of certain values of the
index impossible through observing, which positions were touched. More complex approaches are based on
implementations of Oblivious RAM (ORAM) [16] on top of SMC [17, 14, 29, 15, 10, 21]. These approaches
have the overhead O(logc n) for an array of length n, with c ≈ 3 in typical implementations.

In UaESMC, most of our work has been on SMC based on secret sharing, as the achievable raw perfor-
mance of such SMC protocols is the best known. On the other hand, an efficient application of such type of
SMC requires the computed algorithm to be highly parallelizable, as the computation of each operation (ex-
cept the one, according to which the secret sharing scheme is homomorphic) requires communication among
parties and thus the round complexity of the protocol is proportional to the depth of the circuit expressing
the algorithm. If the algorithm we want to compute contains a large number of array accesses with private
indices, then these accesses have to occur in parallel as well. In this chapter, and in [24] (attached to this
deliverable) we show that in this case, the touching of all elements of the array can be amortized among all
accesses, leading to potentially much smaller overheads per access.

5.1 Required lower-level protocols

We need the following lower-level operations to be implemented in the SMC framework we’re working with,
in order to implement our parallel oblivious array read and write protocols. We note that in Sharemind,
the implementations of all these operations exist and are highly efficient.

• The homomorphic operation, which must be a commutative group operation over the set of possible
private values. This operation must be free and its inverse must also be free. If the private values
come from a ring or a field, then this operation is the addition.

• Multiplication of private values. Equality and less-than checks.

• Oblivious shuffles — private permutations of values — together with operations to apply and unap-
ply them to vectors of values. Given an oblivious shuffle JσK for m elements, and a private vector
(Jv1K, . . . , JvmK), the apply operation returns a new private vector (Jv′1K, . . . , Jv′mK) with v′i = vσ(i).
The unapply operation similarly returns a private vector(Jv′1K, . . . , Jv′mK), but this time the equalities
v′σ(i) = vi hold. It must be also possible to generate a random shuffle (i.e. unknown to computing

parties) for a given number of elements, and to compose a private shuffle and a public shuffle (yielding
a new private shuffle).

21

UaESMC Deliverable D2.2.3 Advances in SMC techniques

Algorithm 5: Reading n values from the private array

Data: A private vector JvK of length m
Data: A private vector JzK of length n, with 1 ≤ zi ≤ m for all i
Result: A private vector JwK of length n, with wi = vzi for all i

1 foreach i ∈ {1, . . . ,m} do JtiK← i;
2 foreach i ∈ {1, . . . , n} do Jtm+iK← JziK;
3 JσK← sortperm(JtK)
4 Jv′K← prefixsum−1(JvK)
5 foreach i ∈ {1, . . . ,m} do JuiK← Jv′iK;
6 foreach i ∈ {1, . . . , n} do Jum+iK← 0;
7 Ju′K← unapply(JσK; prefixsum(apply(JσK; JuK)))
8 foreach i ∈ {1, . . . , n} do JwiK← Ju′m+iK;
9 return JwK

• Declassification of private values in the middle of computation, such that their values become known
to computing parties.

We note that with less-than checks, oblivious shuffles and declassification, a highly efficient protocol
for sorting a private array becomes possible [19], as long as it is known at compile-time that all elements
of the array are different. Moreover, the sorting operation returns an oblivious shuffle that represents the
permutation necessary to sort the given private array. In fact, in this chapter we make the computation of
the sorting permutation the primary operation and denote it by JσK← sortperm(Jv1K, . . . , JvmK); the actual
sorting can be performed by applying JσK to the vector JvK. We require sorting to be stable; in general
this means that we have to add an extra component to the elements of the vector JvK which ensures their
inequality.

5.2 Protocol for reading

In Alg. 5, we present our protocol for obliviously reading several elements of an array. Given a vector
v of length m, we let prefixsum(v) denote a vector w, also of length m, where wi =

∑i
j=1 vj for all

i ∈ {1, . . . ,m}, and where
∑

denotes the application of the homomorphic operation named in Sec. 5.1.
Computing prefixsum(JvK) is a free operation. The inverse operation prefixsum−1 is also free: v1 = w1 and
vi = wi − wi−1 for all i ∈ {2, . . . ,m}.

We see that in Alg. 5, the permutation σ orders the indices which we want to read, as well as the indices
1, . . . , n of the “original array” v. Due to the stability of the sort, each index of the “original array” ends up
before the reading indices equal to it. In apply(σ,u), each element v′i of v′, located in the same position as
the index i of the “original array” in sorted t, is followed by zero or more 0-s. The prefix summing restores
the elements of v, with the 0-s also replaced with the element that precedes them. Unapplying σ restores
the original order of u and we can read out the elements of v from the latter half of u′. A small example is
presented in Fig. 5.1.

The reading protocol is secure due to the composability of lower-level protocols. Its asymptotic commu-
nication complexity is O((m+ n) log(m+ n)), and round complexity is O(log(m+ n)), both dominated by
the sorting operation in line 3 of Alg. 5. When using Alg. 5 in larger applications, a significant optimization
is possible, if we note that the sorting operation requires the indices JzK of the elements we want to read,
but does need the actual values in JvK. If several reads are performed according to the same indices, then
the sorting has to be performed only once.

22

UaESMC Deliverable D2.2.3 Advances in SMC techniques

Let v = (1, 4, 9, 16, 25). Let z = (3, 2, 4, 3). The intermediate values are the following.

• t = (1, 2, 3, 4, 5, 3, 2, 4, 3)

• σ is the permutation
1 2 3 4 5 6 7 8 9

1 2 7 3 6 9 4 8 5

meaning that e.g. the 3rd element in the sorted vector is the 7th element in the original vector.

• v′ = (1, 3, 5, 7, 9) and u = (1, 3, 5, 7, 9, 0, 0, 0, 0).

• After applying σ to u, we obtain the vector (1, 3, 0, 5, 0, 0, 7, 0, 9).

• After prefixsumming, we get the vector (1, 4, 4, 9, 9, 9, 16, 16, 25). Denote it with y.

• After applying the inverse of σ, we get u′ = (1, 4, 9, 16, 25, 9, 4, 16, 9). Indeed, to find e.g. u′7, we look
for “7” in the lower row of the description of σ. We find “3” in the upper row, meaning that u′7 = y3.

• Finally, we return the last n elements of u′, which are w = (9, 4, 16, 9).

All values are private.

Figure 5.1: Example of private reading according to Alg. 5

5.3 Protocol for writing

The protocol for writing is conceptually (though not complexity-wise) simpler than the reading protocol.
It is presented in Alg. 6. When specifying the desired functionality of the protocol, we have to think of
resolving the simultaneous writes to the same element of the updated array. For this purpose, each write
is accompanied by a priority. Of all writes to the same position, only the one with largest priority goes
through. In the algorithm, the existing values in the array receive the minimum priority. We remark that
there may be applications, where it makes sense to allow the writing requests to also have lower priorities
than keeping existing values, and in this case the line 6 in Alg .6 has to be appropriately modified.

In Alg. 6, the indices and priorities are sorted (with higher-priority elements coming first, and existing
elements receiving default priorities). The vector JbK is used to indicate the highest-priority position for each
index: bi = 0 iff the i-th element in the vector j′ is the first (hence the highest-priority) value equal to j′i. All
equality checks in line 10 can be done in parallel. Performing the sort in line 11 moves the highest-priority
values to the first m positions. The sorting is stable, hence the values correspond to the indices 1, . . . ,m in
this order. We thus have to apply the shuffles induced by both sorts to the vector of values v′ = v‖w, and
take the first m elements of the result.

Similarly to the reading protocol, the writing protocol is secure and its asymptotic complexity is O((m+
n) log(m+n)) in communication and O(log(m+n)) in rounds. Also, it allows the same kind of optimization
for applications that write many times to the same indices, according to the same priorities. The expensive
sorting operations do not require the actual values in the existing array, nor the values that are written
to it. The sorting in line 11 can be performed with O(m + n) communication and O(1) rounds, as shown
in [24], but this does not reduce the overall complexity of the protocol.

5.4 Oblivious Extended Permutations

In private function evaluation (PFE), the parties of an SMC want to compute a function with private
description. PFE can be realized through the private computation of a universal circuit, but such circuits
are large compared to circuits they can express [22]. More recently, PFE has been realized by splitting the
task of oblivious circuit evaluation into two parts — (1) obliviously evaluating the gates, and (2) hiding the

23

UaESMC Deliverable D2.2.3 Advances in SMC techniques

Algorithm 6: Obliviously writing n values to a private array

Data: Private vectors JjK, JvK, JpK of length n, where 1 ≤ ji ≤ m for all i
Data: Private array JwK of length m
Result: Updated w: values in v written to indices in j, if priority in p is the highest for this position

1 foreach i ∈ {1, . . . , n} do
2 Jj′iK← JjiK
3 Jp′iK← −JpiK
4 foreach i ∈ {1, . . . ,m} do
5 Jj′n+iK← i
6 Jp′n+iK← MAX VALUE

7 JσK← sortperm(Jj′K, Jp′K)
8 Jj′′K← apply(JσK; Jj′K)
9 Jb1K← 0

10 foreach i ∈ {2, . . . , N} do JbiK← Jj′′i K
?
= Jj′′i−1K;

11 JτK← sortperm(JbK)
12 foreach i ∈ {1, . . . , n} do Jv′iK← JviK;
13 foreach i ∈ {1, . . . ,m} do Jv′n+iK← JwiK;
14 Jw′K← apply(JτK; apply(JσK; Jv′K))
15 foreach i ∈ {1, . . . ,m} do JwiK← Jw′iK;
16 return JwK

topology of the circuit in a manner that allows the outputs of the gates to be passed to the inputs of next
gates [30]. While the implementation of (1) using SMC is straightforward, oblivious extended permutations
have been introduced for (2) in [30]. An extended permutation from m elements to n elements is a function
φ : {1, . . . , n} → {1, . . . ,m} (note the contravariance). It is intended to be applied to an m-element vector
(v1, . . . , vm), producing an n-element vector (vφ(1), . . . , vφ(n)). An OEP is an extended permutation φ realized
in a manner that preserves the guarantees of SMC regarding the privacy of φ.

Our parallel reading algorithm, Alg. 5, essentially constructs an OEP from the vector of indices JzK
(lines 1–3), and then applies it to the vector JvK (the rest of the algorithm). Both the construction and the
application are faster, both asymptotically and in practice, than any other previously published protocol.
We note that prior to the parallel access protocols described in this chapter, we had proposed a different
protocol for OEP [23] (attached to this deliverable), which had worse complexities.

5.5 Discussion

Using our protocols, the cost of n parallel data accesses is O((m + n) log(m + n)), where m is the size
of the vector from which we’re reading values. Dividing by n, we get that the overhead of one access is
O((1 + m

n) log(m + n)). In practice, the cost overhead depend a lot on our ability to perform many data
accesses in parallel. Fortunately, this goal to parallelize coincides with one of the design goals for privacy-
preserving applications in general, at least if the representation of private values is based on secret sharing.
Parallelization allows to reduce the number of communication rounds necessary for the application, reducing
the performance penalty caused by network latency.

Suppose that our application is such that on average, we can access in parallel a fraction of 1/f(m) of
the memory it uses (where 1 ≤ f(m) ≤ m). Hence, we are performing m/f(m) data accesses in parallel,
requiring O(m logm) work in total, or O(f(m) logm) for one access. For the implementations of Oblivious
RAM over SMC, the reported overheads are at least O(log3m). Hence our approach has better asymptotic
complexity for applications where we can keep f(m) small.

There exists a sizable body of efficient algorithms for an abstraction of parallel computation, Parallel

24

UaESMC Deliverable D2.2.3 Advances in SMC techniques

Random Access Machines (PRAM). In this model, an arbitrary number of processors are available, executing
synchronously and sharing common memory. There exist several subclasses of PRAM, depending on how
the read/write conflicts to the same memory location are resolved. A CRCW PRAM allows many processors
to read and write the same location at the same time. In priority-CRCW PRAM, concurrent writes to the
same location are resolved by (numeric) priorities assigned to the write: only the writing operation with
the highest priority gets through [20]. Using our parallel reading and writing protocols, any algorithm
for priority-CRCW PRAM can be implemented on an ABB, as long as the control flow of the algorithm
does not depend on private data. A goal in designing PRAM algorithms is to make their running time
polylogarithmic in the size of the input, while using a polynomial number of processors. There is even a
large class of tasks, for which there exist PRAM algorithms with logarithmic running time.

An algorithm with running time t must on each step access on average at least 1/t fraction of the memory
it uses. A PRAM algorithm that runs in O(logm) time must access on average at least Ω(1/ logm) fraction
of its memory at each step, i.e. f(m) is O(logm). When implementing such algorithm on top of SMC using
the reading and writing protocols presented in this note, we can say that the overhead of these protocols
is at most O(log2m). For algorithms that access a larger fraction of their memory at each step (e.g. the
Bellman-Ford algorithm for finding shortest paths in graphs; for which also the optimizations of reading and
writing protocols described above apply), the overhead is even smaller.

25

Bibliography

[1] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Joan Feigenbaum, editor,
CRYPTO, volume 576 of Lecture Notes in Computer Science, pages 420–432. Springer, 1991.

[2] Dan Bogdanov, Yiannis Giannakopoulos, Roberto Guanciale, Dilian Gurov, Liina Kamm, Peeter Laud,
Alisa Pankova, Pille Pruulmann-Vengerfeldt, Pille Pullonen, Riivo Talviste, Yiannis Tselekounis, and
Jan Willemson. Scientific Progress Analysis and Recommendations, January 2014. UaESMC Deliverable
5.2.2.

[3] Dan Bogdanov, Yiannis Giannakopoulos, Roberto Guanciale, Liina Kamm, Peeter Laud, Pille
Pruulmann-Vengerfeldt, Riivo Talviste, Kadri Tõldsepp, and Jan Willemson. Scientific Progress Anal-
ysis and Recommendations, January 2013. UaESMC Deliverable 5.2.1.

[4] Dan Bogdanov, Roberto Guanciale, Liina Kamm, Peeter Laud, Riivo Talviste, and Jan Willemson.
Advances in SMC techniques, January 2013. UaESMC Deliverable 2.2.1.

[5] Dan Bogdanov, Liina Kamm, Peeter Laud, Alisa Pankova, Pille Pullonen, Riivo Talviste, and Jan
Willemson. Advances in SMC techniques, January 2014. UaESMC Deliverable 2.2.2.

[6] Dan Bogdanov, Liina Kamm, Sven Laur, and Ville Sokk. Rmind: a tool for cryptographically secure
statistical analysis. IACR Cryptology ePrint Archive, 2014:512, 2014.

[7] Dan Bogdanov, Peeter Laud, Sven Laur, and Pille Pullonen. From Input Private to Universally Com-
posable Secure Multi-party Computation Primitives. In Anupam Datta and Cedric Fournet, editors,
IEEE 27th Computer Security Foundations Symposium, CSF 2014, Vienna, Austria, 19-22 July, 2014,
pages 184–198. IEEE, 2014.

[8] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS,
pages 136–145, 2001.

[9] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P. Smart.
Practical Covertly Secure MPC for Dishonest Majority - Or: Breaking the SPDZ Limits. In Jason
Crampton, Sushil Jajodia, and Keith Mayes, editors, ESORICS, volume 8134 of Lecture Notes in
Computer Science, pages 1–18. Springer, 2013.

[10] Ivan Damg̊ard, Sigurd Meldgaard, and Jesper Buus Nielsen. Perfectly secure oblivious ram without
random oracles. In Yuval Ishai, editor, TCC, volume 6597 of Lecture Notes in Computer Science, pages
144–163. Springer, 2011.

[11] Ivan Damg̊ard and Jesper Buus Nielsen. Universally composable efficient multiparty computation from
threshold homomorphic encryption. In Dan Boneh, editor, CRYPTO, volume 2729 of Lecture Notes in
Computer Science, pages 247–264. Springer, 2003.

[12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from
somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO,
volume 7417 of Lecture Notes in Computer Science, pages 643–662. Springer, 2012.

26

UaESMC Deliverable D2.2.3 Advances in SMC techniques

[13] Wenliang Du and Mikhail J. Atallah. Privacy-preserving cooperative scientific computations. In Pro-
ceedings of the 14th IEEE Workshop on Computer Security Foundations, CSFW ’01, pages 273–, Wash-
ington, DC, USA, 2001. IEEE Computer Society.

[14] Craig Gentry, Kenny A. Goldman, Shai Halevi, Charanjit S. Jutla, Mariana Raykova, and Daniel
Wichs. Optimizing oram and using it efficiently for secure computation. In Emiliano De Cristofaro and
Matthew Wright, editors, Privacy Enhancing Technologies, volume 7981 of Lecture Notes in Computer
Science, pages 1–18. Springer, 2013.

[15] Craig Gentry, Shai Halevi, Charanjit Jutla, and Mariana Raykova. Private Database Access With
HE-over-ORAM Architecture. Cryptology ePrint Archive, Report 2014/345, 2014. http://eprint.

iacr.org/.

[16] Oded Goldreich and Rafail Ostrovsky. Software Protection and Simulation on Oblivious RAMs. J.
ACM, 43(3):431–473, 1996.

[17] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin, Mariana Raykova,
and Yevgeniy Vahlis. Secure Two-Party Computation in Sublinear (Amortized) Time. In Ting Yu,
George Danezis, and Virgil D. Gligor, editors, the ACM Conference on Computer and Communications
Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012, pages 513–524. ACM, 2012.

[18] Roberto Guanciale, Dilian Gurov, Peeter Laud, Alisa Pankova, Martin Pettai, and Sander Siim. Algo-
rithms for Large-Scale SMC Problems, July 2015. UaESMC Deliverable 4.2.2.

[19] Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida, and Katsumi Takahashi. Practically efficient
multi-party sorting protocols from comparison sort algorithms. In Taekyoung Kwon, Mun-Kyu Lee,
and Daesung Kwon, editors, ICISC, volume 7839 of Lecture Notes in Computer Science, pages 202–216.
Springer, 2012.

[20] Joseph JáJá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

[21] Marcel Keller and Peter Scholl. Efficient, Oblivious Data Structures for MPC. In Palash Sarkar and
Tetsu Iwata, editors, Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference
on the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7-11, 2014, Proceedings, Part II, volume 8874 of Lecture Notes in Computer Science, pages
506–525. Springer, 2014.

[22] Vladimir Kolesnikov and Thomas Schneider. A practical universal circuit construction and secure
evaluation of private functions. In Gene Tsudik, editor, Financial Cryptography, volume 5143 of Lecture
Notes in Computer Science, pages 83–97. Springer, 2008.

[23] Peeter Laud. A private lookup protocol with low online complexity for secure multiparty computation.
In Siu Ming Yiu and Elaine Shi, editors, ICICS 2014, LNCS. Springer, 2014. To appear.

[24] Peeter Laud. Parallel Oblivious Array Access for Secure Multiparty Computation and Privacy-
Preserving Minimum Spanning Trees. Proceedings of Privacy Enhancing Technologies, 2015(2):188–205,
2015.

[25] Peeter Laud and Alisa Pankova. Verifiable Computation in Multiparty Protocols with Honest Ma-
jority. In Sherman S. M. Chow, Joseph K. Liu, Lucas Chi Kwong Hui, and Siu-Ming Yiu, editors,
Provable Security - 8th International Conference, ProvSec 2014, Hong Kong, China, October 9-10,
2014. Proceedings, volume 8782 of Lecture Notes in Computer Science, pages 146–161. Springer, 2014.

[26] Peeter Laud and Alisa Pankova. Preprocessing-based verification of multiparty protocols with honest
majority. Cryptology ePrint Archive, Report 2015/674, 2015. http://eprint.iacr.org/.

27

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

UaESMC Deliverable D2.2.3 Advances in SMC techniques

[27] Peeter Laud and Alisa Pankova. Transformation-based outsourcing of linear equation systems over real
numbers. Cryptology ePrint Archive, Report 2015/322, 2015. http://eprint.iacr.org/.

[28] Peeter Laud and Jan Willemson. Composable oblivious extended permutations. In Frédéric Cuppens,
Joaqúın Garćıa-Alfaro, A. Nur Zincir Heywood, and Philip W. L. Fong, editors, Foundations and
Practice of Security - 7th International Symposium, FPS 2014, Montreal, QC, Canada, November 3-
5, 2014. Revised Selected Papers, volume 8930 of Lecture Notes in Computer Science, pages 294–310.
Springer, 2014.

[29] Chang Liu, Yan Huang, Elaine Shi, Jonathan Katz, and Michael W. Hicks. Automating efficient ram-
model secure computation. In 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley,
CA, USA, May 18-21, 2014, pages 623–638. IEEE Computer Society, 2014.

[30] Payman Mohassel and Seyed Saeed Sadeghian. How to Hide Circuits in MPC: an Efficient Framework
for Private Function Evaluation. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT,
volume 7881 of Lecture Notes in Computer Science, pages 557–574. Springer, 2013.

[31] Birgit Pfitzmann and Michael Waidner. A model for asynchronous reactive systems and its application
to secure message transmission. In IEEE Symposium on Security and Privacy, pages 184–, 2001.

28

http://eprint.iacr.org/

	1 Introduction
	2 Privacy-preserving Solving of Systems of Linear Equations
	2.1 Adaptations of Numeric Methods to SMC
	2.2 Transformation-based Solution Methods
	2.2.1 Problem Statement
	2.2.2 Security Definition
	2.2.3 Our Results
	2.2.4 Working Constructions

	2.3 Conclusion

	3 From Private to Secure SMC Primitives
	3.1 Security definitions
	3.2 Composability
	3.3 Input Privacy
	3.4 Security of the Composed Protocols
	3.5 Conclusion

	4 Verifiable SMC through Preprocessing
	4.1 Initial Settings
	4.2 Verifying Basic Gate Operations
	4.3 Assumptions
	4.4 Protocol Outline
	4.5 Conclusion

	5 Privacy-preserving Parallel Array Access
	5.1 Required lower-level protocols
	5.2 Protocol for reading
	5.3 Protocol for writing
	5.4 Oblivious Extended Permutations
	5.5 Discussion

	Bibliography

