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Executive Summary:
Design of Protocols with a Mixture of Cryptographic and
Game-Theoretic Assumptions

This document summarizes deliverable D3.4 of project FP7-284731 (UaESMC), a Specific Targeted Research
Project supported by the 7th Framework Programme of the EC within the FET-Open (Future and Emerging
Technologies) scheme. Full information on this project, including the contents of this deliverable, is available
online at http://www.usable-security.eu.

This report contains a high-level discussion and overview of the work done by the research team from
the University of Athens during the last year of the project. This work is included in [26] and [25]. The
scope of the deliverable is to study the effect of using game-theoretic tools in the SMC setting. Our final
goal is to construct fair and robust secure multi-party protocols, i.e. protocols in which all parties learn the
output or nobody does, and moreover, they guarantee output delivery and prevent denial of service attacks.
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Chapter 1

The Bitcoin Protocol and SMC

1.1 Bitcoin

Bitcoin is a decentralized, peer-to-peer, payment system, introduced by Satoshi Nakamoto ([31]) in 2008, in
which the users may perform transactions without the need of a central entity. The system is based on a
public transaction ledger, called blockchain, implemented in a distributed way. The blockchain is maintained
and extended by the participants, called miners. In order to generate new blocks for the blockchain, the
miners need to solve a proof-of-work which requires to brute-force a hash inequality based on SHA-256.
Concretely, the miners need to find a number, called nonce, such that when the block content is hashed
along with the nonce, the output is numerically smaller than a target value defined by the network. The
proof is easy to verify but not easily generated. This proof-of-work system, combined with the chaining of
blocks, prevents attackers from modifying the block chain, since in order to modify a single block in the chain
the attacker needs to modify all subsequent blocks. Each block in the blockchain consists of transactions that
are generated by owners of bitcoins who issue transactions for entities of their choice that accept payments
in bitcoin. Payers broadcast the set of transactions and miners incorporate the transactions they receive
into their newly generated blocks. After block generation, the miner that generated the new block receives
a predetermined amount of bitcoins. This is how bitcoins are created and distributed among miners.

As the Bitcoin protocol relies on the blockchain, a major concern is preventing attackers from manip-
ulating, or reorganizing, the transaction ledger. As we discuss in the following sections, Bitcoin has many
applications in SMC, and therefore, any attack that compromises the security of the blockchain, renders the
application built upon it, insecure. In [31], Nakamoto provides a set of system parameters that guarantee
security against attackers that try to manipulate the blockchain and his main argument is the following:
assuming we have a transaction that transfers a specific amount of bitcoins to a payee, then, if the payee
waits for the transaction to advance into the blockchain a number of k blocks, then the probability that an
attacker succeeds in producing an alternative blockchain that reorganizes the public one, drops exponen-
tially with k. This approach may be oversimplified, and moreover, it is completely out of the game-theoretic
context, which seems to be mandatory for any construction (e.g., [26]) that models and builds SMC over
Bitcoin, using game-theoretic tools. [25] is an ongoing work that aims to give a game-theoretic analysis of
the Bitcoin protocol. One of the major concerns of [25] is to investigate the circumstances under which
following the Bitcoin protocol is a Nash equilibrium.

1.2 The Effects of Selfish Behaviour

In this section we argue about the necessity of providing a thorough game-theoretic analysis of the Bitcoin
protocol. In [12] and [28], it is stated that Bitcoin miners tend to behave strategically and form mining pools.
This comes from the fact that rewards in Bitcoin are distributed at infrequent, random intervals, and miners
form mining pools so as to receive their rewards in a more predictable rate. All pool participants contribute
to the solution of the proof-of-work, and if the pool solves the current crypto-puzzle, the participants receive
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rewards proportionally to their contributions. Besides that, mining pools may receive slightly higher rewards
since they achieve better coordination between participants due to lower network latency. In this setting,
analyzing participants’ incentives looks mandatory: are there any strategies that give higher payoff that
the prescribed one? What if the attacker that controls a significant amount of participants, or a number of
pools, tries to introduce disagreement between the honest miners so that it splits their hashing power on
different proof-of-work instances?

[12] is the first work addressing such concerns. They show that the Bitcoin protocol is not incentive
compatible, meaning that participants that do not disclose information related to their actions, as it is
dictated by the protocol, they achieve higher payoff than following the protocol. The main argument of
[12] is based on a strategy, called “Selfish Mining”, that when followed by a minority pool it gives revenue
which is higher than the one which is proportional to the total mining power of the pool. When a pool
follows “Selfish Mining” it prefers to keep its newly discovered blocks private, and therefore, forking the
chain in two chains. The public one, followed by the participants that are unaware of the new blocks (call
that group of parties A), and the private one, followed by the pool. Whenever the pool creates a new block
it keeps it private incrementing the distance from the public chain. On the other hand, when the public
chain approaches the private one, selfish miners publicize blocks from the private chain obtaining payments
for those blocks. As it is proved in [12], this strategy makes the parties in group A to waste resources on
mining blocks that will never be part of the public block chain, and even if selfish miners waste resources,
the parties in group A waste proportionally more. Therefore, the expected reward of selfish mining exceeds
its share of the total network power and this fact gives incentives to follow the “Selfish Mining” strategy.
The analysis made in [12] takes into account the size of the pool and the network propagation speed. For a
mining pool with almost perfect connectivity the size of the pool may be close to zero, meaning that Bitcoin
is safe only if 100% of the miners belong to group A. As the network latency increases, the hashing power
of the pool needs to be bigger, reaching the lower bound of 1/3 over the total power, for the lowest level of
connectivity. This is significantly lower than the 50% currently assumed in practice.

In order to simplify things, [12] assumes that miners split into two groups. The parties of group A,
assumed to be the honest majority following the protocol, and the minority mining pool that follows the
selfish mining strategy. This is the motivation for [25], which aims to provide a game-theoretic analysis of
the Bitcoin protocol while assuming that we have one group of parties, which are all rational, i.e., they try
to maximize their utility functions, and we assume that during initialization there is only a single block, the
genesis block, being the target block for all parties. In other words, in [12] there is no assumption on the
network state when the game starts. In this setting, parties define their mining and announcing strategies,
meaning that they choose which block to mine, and moreover, they decide to publicize, or not, their newly
created blocks. The strategy of every party depends on its private view (local view) in case there are blocks
not published by the party, and the public view of the network which is the common view that all parties
have. For a high level description of [12] we refer the reader to Chapter 4.

1.3 Circumventing Limitations in SMC

Secure multi-party computation (SMC), initiated by the seminal works of Yao [43] and Goldreich et al. [19],
enables a set of parties to evaluate any function on their private inputs, while guaranteeing privacy on those
inputs, i.e., no party learns anything about other parties’ inputs besides what is being inferred by the output
of the computation. Besides privacy, an SMC protocol is desirable to be fair, meaning that all parties learn
the output or nobody does, and robust, meaning that it guarantees output delivery and prevents denial of
service attacks.

From the mid-80s it was made clear that fairness is hard to achieve. The impossibility result of Cleve [10]
showed that secure two-party computation for general functionalities is impossible for any protocol without
assuming honest majority. Since then, there are many works studying various relaxations of fairness, like
“partial fairness”, both for the case of specific functionalities like coin tossing ([10, 11, 29]), as well as for
general functionalities ([5, 7, 14, 15, 20, 21, 36]), and furthermore, may not require honest majority. The
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major drawback for those protocols is that they are highly inefficient.
In order to circumvent the impossibility results in fairness in the setting of dishonest majority, [1, 2, 6,

27, 26], introduced a new direction which is based on Bitcoin (and other cryptocurrencies), where fairness
is guaranteed by imposing penalties to the parties in case of detection while cheating. By choosing the
appropriate value for the penalty, the attacker is enforced to follow the protocol, and moreover, honest
parties are guaranteed to learn the output, or receive compensation by the cheating party. The high level
idea of [26] is given in Chapter 3.
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Chapter 2

The Game-Theoretic Lens

Game Theory [42] can be described as the field of mathematics that tries to formally study, by analyzing and
predicting, the behaviour of rational, selfish entities, especially under conflict of their preferences. This is a
very general description, and through the years this field has evolved into on of the richest and more diverse
contemporary areas of research, spanning many diverse disciplines such as Economics, Computer Science,
Mathematics, Biology, Sociology, etc.. As such, various models of such interactions between competing
agents have been developed, trying to capture different settings that arise from many different applications.
In this chapter we will very briefly present only a few of the most important game-theoretic notions that
inspired some of the results of the current deliverable D3.4.

2.1 (Non)cooperative Games

The “standard” notion of a game G [13, 35] consists of a finite set of players N = {1, 2, . . . , n}, and for
each player i ∈ N a set of strategies (or actions) Si available to her together with a utility (or payoff )
function ui :

∏n
i=1 Si −→ R over them. The intuitive interpretation is that, every possible strategy profile

(or outcome) s = (s1, s2, . . . , sn) ∈ S =
∏
i Si of G results in an amount of “happiness” measured by ui(s)

for each player i, and thus, being fully rational and selfish, each one of them will try to choose a strategy si
that will maximize her own payoff. Usually we generalize that model by allowing the agents to play mixed
strategies, i.e. assign probabilities on their pure strategies Si instead of just deterministically committing to
a single action si ∈ Si. Denote the set of all such possible probability distributions over Si by Σi. Then,
naturally enough, the utility maximization is done under expectation over the randomization of the players.

The most celebrated and widely studied and solution concept (or equilibrium) of such games is that
of Nash equilibrium (NE) [32]: a profile of (mixed) strategies σ = (σ1, σ2, . . . , σn) ∈ ∏n

i=1 Σi, one for each
player, is a NE if no player has an incentive to unilaterally deviate from it. That is, if all other players
N \ {i} commit to their strategies σ−i, player i maximizes his expected payoff by also committing to his
strategy σi:

Es∼σ [ui(si, s−i)] ≥ Es−i∼σ−i

[
ui(s

′
i, s−i)

]
,

for all players i ∈ N and pure strategy si ∈ Si. The seminal result of Nash demonstrates how all games
possess at least one NE, establishing it a natural and meaningful solution concept. More on traditional
solution concepts of games can be found in our Deliverable D3.1 [41].

Notice how, in this standard approach to Game Theory, each player’s behaviour is totally individualistic:
deviations and utility-maximization are performed by the perspective of each agent separately, and no
coordination of actions is assumed. However, in many settings this is not the most suitable or realistic
assumption: we would like to capture and predict the outcome in models where the participants are willing
to coordinate and deviate in groups in an effort to drive their utilities up. This is the main idea behind the
important branch of Game Theory known as Cooperative Game Theory [4], which is essentially the theory
of coalition formation.
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The traditional notion of a NE can be then generalized in a natural way to that of strong NE, where no
group of players have an incentive to collectively deviate and improve each one of the participants’ utilities:

Es∼σ [ui(sA, s−A)] ≥ Es−A∼σ−A

[
ui(s

′
A, s−A)

]
,

for all possible coalitions A ⊆ N , every player i ∈ A and pure strategies sA ∈
∏
j∈A Sj . However appealing

that game solution notion may seem, it is actually very strong and restrictive and as such, very few games
actually have such equilibria.

2.2 Fairness

Perhaps a more natural way of approaching the study of cooperative games is through the assumption of
transferable utilities. In such models, every group of players A ⊆ N is associated with some joint value
v(A); think of that as a combined value that this group A can generate for its members. Then, the critical
question is how this value is going to be split among its members in a “fair” way. For example, a natural
way to capture deviations would be that of associating share xi to each player i ∈ N such that the system
is balanced, i.e.

∑n
i=1 xi = c(N) and then require our solutions v to be such that no coalition can gain by

deviating, that is ∑

i∈A
xi ≥ v(A),

for all groups A ⊆ N . This is the important notion of a core [40, 38] of a cooperative game.

A different but well studied notion of fairness is that of the Shapley value [39]: fix an ordering of the
set of players N = (1, 2, . . . , n) and define Ni = (1, 2, . . . , i) for all i. Then, the marginal value of the i’th
player is v(Ni)− v(Ni−1). Notice how this of course depends on the particular initial ordering of N which
we have fixed. Then the Shapley value sets the value-share xi of a player i to be the expected value of
her marginal value, where the expectation is taken uniformly over the set of possible orderings of N . An
important, characteristic property of the Shapley value is that it can be formally proved to be the only
value-share function x = (x1, x2, . . . , xn) that satisfies the following desirable properties: anonymity (it does
not depend on the actual labels/names of the players), dummy (if a player does not contribute to the joint
value v then she should not be given any share) and additivity (x is an additive function of the joint-value
v). Finally, let us briefly mention here that an other, widely studied solution concept of cooperative games
in the Economics literature is that of the Nash Bargaining [33]. For an extensive discussion on these matters
of fairness we suggest [23].

These notions of group-deviation resistance, fairness and cooperative games have inspired our work in the
current deliverable, and we tried to shed new light in standard, cryptographic views to Bitcoin computation
and functionality by approaching it in a novel, game-theoretic way (see Chapter 4). Also, the use of modern
cryptocurrencies allow for a more flexible platform for implementing value-shares, monetary compensations
and payoffs for the players, and we expect that to evolve into a fruitful area of research in the coming years
(see Chapter 3)

2.3 Payments and Mechanism Design

Although games seem to capture the fundamental notion of strategic interaction between players, the models
so far are totally passive from the perspective of the designer: the system somehow reaches a stable state, an
equilibrium point, which is an internal property of the game and we can have no control over it at all. But for
many problems we are interested in studying, there is some external designer who wants to create protocols
that implement some desired objective, for example minimization of the total social cost or the aggregation
of the preferences of the members of the society in a single outcome, e.g. voting. This means that we would
like to have a way of designing rules for the games in a way that the previous, passive convergence to a
stable state will coincide with an outcome that satisfies our design needs. This is essentially the subject
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matter of the entire area of Mechanism Design [30, 34], which for that reason sometimes is being referred
to as reverse game theory. More on Mechanism Design can also be found in our Deliverable D3.2 [17].

A key aspect of Mechanism Design is the requirement that our protocols should be truthful : they
should give no incentive to the players to lie about their true preferences and manipulate the mechanism.
Monetary transfers and payments play an essential part in the implementation of such mechanisms, such
as auctions, scheduling rules and bandwidth allocation in networks. This is formally supported by the
celebrated impossibility results by Arrow [3] and Gibbard-Satterthwaite [18, 37], that essentially state that
without payments the only meaningful social choice rules that can be implemented are dictatorships: there
is always going to be an agent that can manipulate the outcome just by switching her own preference [16].
These results laid the way to the foundations of a formal and powerful theory of implementing collective
preferences by the use of monetary transfers. Under this light, our work in the context of the current
deliverable (see Chapter 3) tries to provide a formal framework for monetary transfers in SMC settings,
deploying cryptocurrencies, that bypasses analogous seminal impossibility results in cryptography [10].
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Chapter 3

SMC Through Bitcoin Using
Compensations

Beyond standard privacy features, a secure multi-party computation (SMC) protocol is highly desirable to be
also fair (either all parties learn output or none) and robust (the delivery of the output is guaranteed and the
adversary cannot mount a “denial of service” against the protocol). Achieving fairness and robustness in a
setting where there is an arbitrary number of possible corruptions, as ideal as it may appear, is prohibited by
strong impossibility results stemming from the work of Cleve [10] who showed that coin-flipping is actually
infeasible in any setting where there is no honest majority among parties that execute the protocol. These
impossibility results, combined with the importance of the properties that they prevent, strongly motivate
the exploration of alternative —yet still realistic— models that would enable fair and robust SMC protocols.

With the advent of Bitcoin [31] and other decentralized cryptocurrencies, a new direction was devel-
oped [2, 1, 6, 27] for circumvention of the impossibility results regarding the fairness property: enforcing
fairness could be achieved through imposing monetary penalties. In this setting a breach of fairness by the
adversary is still possible but it results in the honest parties collecting a compensation in a way that is
determined by the protocol execution. At the same time, in case fairness is not breached, it is guaranteed
that no party loses any money (despite the fact that currency transfers may have taken place between the
parties). The rationale here is that a suitable monetary penalty suffices in most practical scenarios to force
the adversary to operate in the protocol fairly.

The above constitute an important step for the design of SMC protocols with properties that circumvent
the classical impossibility results. However, several critical open questions remain to be tackled and that
was the goal of the authors of [26] in the context of the current deliverable D3.4. The key elements of this
work are listed below:

• A new formal model that utilizes two ideal functionalities and expresses the ledger of transactions
and a clock in the sense of [24] that is connected to the ledger and enables parties to synchronize
their protocol interactions. Our ledger functionality enable us to abstract all the necessary features
of the underlying cryptocurrency. Contrary to the only previous formalization approach [6, 27] our
modelling allows the entities that participate in a SMC execution to be regular interactive Turing
machines (ITM) and there is no need to equip them with additional physical features such as “safe”
and “locks”. Furthermore, the explicit inclusion of the clock functionality (which is only suggested in
[6, 27]) reveals the exact dependencies between these two functionalities that are necessary in order for
SMC with compensation protocols to be properly described. We express our model within a general
framework that we call Q-fairness and may be of independent interest as it can express meaningful
relaxations of fairness in the presence of a global ideal functionality.

• A composition theorem that shows that our protocol realizes SMC in a universally composable fashion.
Our composition proof treats the clock and ledger functionalities as global setups in the sense of [8, 9].
We emphasize that this is a critical design choice: the fact that the ledger is a global functionality
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ensures that any penalties that are incurred to the adversary that result to credits towards the honest
parties will be globally recognized. This should be contrasted to an approach that utilizes regular ideal
functionalities which may be only accessible within the scope of a single protocol instance and hence
any penalty bookkeeping they account may vanish with the completion of the protocol. Providing a
composition theorem for SMC protocols with compensation was left as an open question in [6].

• A new protocol for fair and robust SMC with compensation. The robustness property we prove
guarantees that once the protocol passes an initial round of deposits, parties are guaranteed to obtain
output or be compensated. This is in contrast to fair SMC with compensation [2, 1, 6, 27] where the
guarantee is that compensation takes place only in case the adversary obtains output while an honest
party does not. To put it differently, it is feasible for the adversary to lead the protocol to a deadlock
where no party receives output however the honest parties have wasted resources by introducing
transactions in the ledger (as posting transactions in the ledger requires a fee that is collected by the
miners). We remark that it is in principle possible to upgrade the protocols of [2, 1, 6, 27] to the
robust SMC setting by having them perform an SMC with identifiable abort [22] (in such protocol
the party that causes the abort can be identified and excluded from future executions). However even
using such protocol the resulting robust SMC with compensation will need in the worst case a linear
number of deposit/communication rounds in the number of malicious parties. Contrary to that our
robust protocol requires a constant number of deposit/communication rounds independently of the
number of parties that are running the protocol. Our construction uses time-locked transactions in
a novel way to ensure that parties do progress in the SMC protocol or otherwise transactions are
suitably revertible to a compensation for the remaining parties. The structure of our transactions is
quite more complex than what can be presently supported by bitcoin; we provide a high level overview
of how our protocol can be implemented via Ethereum31 contracts.

1http://www.ethereum.org
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Chapter 4

Bitcoin Under Rationality

In this chapter we provide the high level idea behind [25], which aims, as a first step, to provide a game-
theoretic abstraction of the Bitcoin protocol. As it was discussed in section 1.2, [25] tries to avoid strong
assumptions on the incentives of the participants and its final goal is to investigate the circumstances under
which the Bitcoin protocol is a Nash equilibrium. Since Bitcoin is a quite complex protocol, providing the
formal game, as well as analysing it, are quite involved and challenging procedures.

The ideas in [25] are preliminary and its structure goes as follows. First we define the Bitcoin as a game
using a graph based approach (Definition 1), and then, using a grid based approach (Definition 7). The two
definitions are almost equivalent, but the later one seems to be more intuitive. Informally, we consider an
n-party, lottery-based, game ΓT,k∗ , which is defined concretely in Definition 1 and is parametrized by T ,
k∗ ∈ N. The game proceeds in rounds and each round corresponds to a specific time interval such that for
every i ∈ [n], there is a set, Vi, of active lotteries which are visible to player Pi. In the first round there
is only one active lottery and for all rounds there is a fixed set of players {P1, . . . , Pn}, n ∈ N. In each
round of the game the parties decide about their betting and announcing strategies. During the betting
stage, each party Pi, i ∈ [n], may allocate xji tickets from lottery Lj , where

∑
{j | Lj ∈ Vi} x

j
i ≤ xi, and xi is

defined right before the game starts and denotes the budget of player i. The total number of tickets for each
lottery is T ∈ N, and we assume that

∑n
i=1 x

j
i << T , i.e., for each lottery Lj there is a number of tickets

which remains unallocated and there might be no winner with probability (T −∑n
i=1 x

j
i )/T . The winning

probability of player Pi in lottery Lj is xji/T , and if Pi wins in Lj , a new lottery Lj′ is created and Pi is being
informed about his win, while no other party does. It is Pi who decides to inform, or not, the rest of the
participants about the newly created lottery. This mechanism creates a set of directed trees {G1, . . . , Gn},
where each Gi = (Vi, Ei) consists of lotteries visible to party Pi; if Pi wins in Lj , a new lottery (vertex) Lj′

is created and the edge (Lj , Lj′) is added to Ei. In addition, if Pi announces its win on Lj , then the node
Lj′ , as well as the edge (Lj , Lj′), are being incorporated into the private graphs of all parties; the graph
G = (V,E) that consists of the lotteries that have been publicly announced is being updated accordingly.
The game terminates when the depth of G becomes k∗, i.e., when we have a publicly known directed path
of length k∗. Let V̄ = {L1, . . . , Lk} be the set of lotteries, public or not, created during the game, and let
{Lw1 , . . . , Lwk∗} be the publicly known set of lotteries that forms a directed path of length k∗. Assuming

the game terminates, each party Pi receives payoff c ·∑k∗
j=1W

wj

Pi
−∑k

j=1 x̄
j
i , where c is a constant reward

given to the winner, the predicate W j
P is equal to 1 if and only if player p wins lottery Lj and Lj ∈ V , and

x̄ji denotes the total investment of party Pi in lottery Lj .

In the description given above, lotteries correspond to Bitcoin blocks, the parties need to decide which
blocks (lotteries) to mine, and in case of wining, they need to decide if they publicizing the new block, or
not. We prove (Lemma 9) that if all parties follow the strategy that corresponds to the strategy indicated
by the Bitcoin protocol, i.e., they always announce their wins and they bet on the last lottery of the longest
path of the public lottery graph, they receive payoff which is proportional to their investments (or hashing
power). This property is mandatory for any model that aims to capture the properties of the Bitcoin
protocol. Lemma 10 is the first attempt towards analyzing parties’ strategies. We prove that for finite
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games in which all parties have the same budget x << T , and the graph is of depth two, choosing not to
announce a winning lottery yields lower payoff than the strategy that does. Currently, [25] is in the process
of analyzing games of bounded depth, say k∗, bigger than 2, and the analysis seems to be quite complex,
since it needs to consider all different strategies for announcing and betting, for all graphs of depth k∗.
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