
UaESMC

Project No: FP7-284731

Project Acronym: UaESMC

Project Title: Usable and Efficient Secure Multiparty Computation

Instrument: Specific Targeted Research Project

Scheme: Information & Communication Technologies

Future and Emerging Technologies (FET-Open)

Deliverable D4.2.1

Algorithms

Due date of deliverable: 31st January 2014

Actual submission date: 31st January 2014

Start date of the project: 1st February 2012 Duration: 36 months

Organisation name of lead contractor for this deliverable: KTH

Specific Targeted Research Project supported by the 7th Framework Programme of the EC

Dissemination level

PU Public X

PP Restricted to other programme participants (including Commission Services)

RE Restricted to a group specified by the consortium (including Commission Services)

CO Confidential, only for members of the consortium (including Commission Services)

Executive Summary:
Algorithms

This document constitutes deliverable D4.2.1 of project FP7-284731 (UaESMC), a Specific Targeted Research
Project supported by the 7th Framework Programme of the EC within the FET-Open (Future and Emerging
Technologies) scheme. Full information on this project, including the contents of this deliverable, is available
online at http://www.usable-security.eu.

The report presents algorithms developed in workpackage WP4.2.1 and contains an overview of our
research results and an appendix. The overview presents the application scenarios and the existing state
of the art and summarizes the algorithms developed in the work package. The appendix consists of five
technical reports, each one presenting the technical details of the implemented solutions.

The deliverable is an intermediate version of the final deliverable D4.2.2.

List of Authors

Roberto Guanciale (KTH)
Dilian Gurov (KTH)

2

http://www.usable-security.eu

Contents

1 Introduction 4

2 Overview 5
2.1 “P2P” positioning system . 5
2.2 Collaborative cost aware routing . 7

2.2.1 Non-compact inter-AS routing . 7
2.2.2 Truthful path allocation . 8

2.3 Distributed Monitoring and Collaborative Intrusion Detection 8
2.3.1 Collaborative Intrusion Detection . 8
2.3.2 Distributed Monitoring . 10
2.3.3 Collaborative Intrusion Detection on top of Distributed Monitoring 11

Bibliography 13

A Appendix 14
Trilateration based on partially homomorphic cryptosystems . 15
SMC-Based Privacy-Preserving Distributed Monitoring . 22
Private Regular Language Intersection . 32
Privacy preserving and truthful allocation of edges in a weighted graph 45
Distributed and privacy preserving single source shortest paths . 52

3

Chapter 1

Introduction

This document summarizes deliverable D4.2.1 of project FP7-284731 (UaESMC), a Specific Targeted Re-
search Project supported by the 7th Framework Programme of the EC within the FET-Open (Future and
Emerging Technologies) scheme. Full information on this project, including the contents of this deliverable,
is available online at http://www.usable-security.eu.

The document present algorithms developed in workpackage WP4.2.1. The main goal of the proposed
techniques and algorithms is to effectively apply secure multiparty computation to real applications. With
this aim, we take into account realistic networking and resource constraints. The deliverable is an interme-
diate version of the final deliverable D4.2.2 that is due at the end of the project.

The document is composed of two chapters:

• Chapter 2 provides an overview of our research results. The chapter presents the application scenarios
and the existing state-of-the-art and summarizes the algorithms developed in the work package.

• The Appendix is composed of five technical reports that present the technical details of the imple-
mented solutions.

4

http://www.usable-security.eu

Chapter 2

Overview

This Chapter provides an overview of our research results. The chapter presents the application scenarios
and the existing state-of-the-art and summarizes the algorithms developed in the work package D4.2.1. We
focus on three main application scenarios:

• Section 2.1 presents a Peer-to-Peer positioning system. The system is a GPS-complementary in-
frastructure for location-aware applications. Appendix A.1 describes an algorithm to implement the
Peer-to-Peer localization based on trilateration and partially homomorphic cryptosystems.

• Section 2.2 presents a cost-aware routing mechanism for autonomous systems. Our main goal is to
allow competitive parties to collaborate to achieve cost-effective routing tables. Appendix A.4 describes
the implementation of a modified version of the Belman-Ford algorithm using secret sharing, which
requires a centralized infrastructure. Appendix A.5 describes a distributed algorithm to compute single
source shortest paths that uses Sharemind as mathematical blackbox.

• Section 2.3 presents collaborative monitoring. The presented infrastructure enables distributed (and
possible unaware) parties to jointly increase the effectiveness of their intrusion detection and debug-
ging infrastructures. In Appendix A.2 we identify the information leaked by distributed monitoring
algorithms in different scenarios and show how the general problem can be addressed by privately
computing language intersection among subset of involved partners. In Appendix A.3 we present
a prototype implementation of privacy-preserving intersection of regular languages. Our algorithm
starts from a Deterministic Finite Automaton (DFA) representation of the input languages, computes
their product and then minimizes the resulting product automaton, yielding a canonical (and thus
non-leaking) representation of the language intersection.

2.1 “P2P” positioning system

We investigated one of the applications proposed in the deliverable Section 3.1.2 of Deliverable D4.1 [9]: a
peer to peer positioning system. Location-aware mobile applications rely on two main infrastructures: the
Global Positioning System (GPS) is adopted as ubiquitous available service for outdoor car navigation, WiFi
coverage is used to increase precision or indoor positioning. In several scenarios, exploiting these approaches
is not sufficient. A peer to peer positioning system can support the existing infrastructure, by providing a
further measure. In this scenario several mobile peers dynamically discover their positions (e.g. by using
the existing infrastructures or the p2pps itself) and act as further information sources for other peers.

A peer Q exploits the application to discover its location pQ = (xQ, yQ, zQ). We assume the availability
of n other peers Pi that know their own positions pi = (xi, yi, zi). We also assume that it is possible to
estimate the distance ri between the peer Q and each other peer Pi. The distances can be obtained by
using several electromagnetic measures, ranging by WiFi beam signals, FM signals and bluethooth. These

5

UaESMC Deliverable D4.2.1 Algorithms

inputs allow to adopt “trilateration” to compute the unknown position of the peer Q : for each peer Pi, the
position pi and the distance ri identify a sphere surface:

r2i = (xQ − xi)2 + (yQ − yi)2 + (zQ − zi)2

The equation corresponding to the peer Pn can be used to linearize the quadratic equation system: the
position pQ can be obtained as pQ = s+ pn where s is the solution of the linear system of equations As = b:

A =

x1 − xn y1 − yn z1 − zn
...

xn−1 − xn yn−1 − yn zn−1 − zn

 ~s =

xQ − xn
yQ − yn
zQ − zn

 ~b =

b1
...
bn−1

where bi =
r2n−r2i+(xn−xi)

2+(yn−yi)2+(zn−zi)2
2

If the resulting system has three linear independent equations (namely there are four peers that know
their own positions) and the measures are not affected by errors, then trilateration is reduced to solving the
resulting linear system of equations. If the linear system is overdetermined or the measurements are affected
by errors, the nearest solution can be discovered by solving the linear least squares problem, estimating the
s as the position s̄ that fits the “best”, in the sense of solving the quadratic minimization problem:

s̄ = argmins(| b−As |2)

The linear least squares has an unique solution if the columns of A are linearly independent (i.e. there are
at least three linearly independent position of the involved peers). The problem can be solved by handling
the “normal equations”: (ATA)s = AT b.

In this application we assume that the peer Q knows the distances ri of the other peers and wants to
discover its own position. The other participants know their own positions and must not be able to discover
any information on the location of Q.

The general approach [11] to securely compute the pQ consists in building a circuit that performs “Gauss-
elimination”. For a system of n equations and n variables, “Gauss-elimination” requires

• n(n− 1)/2 divisions

• (2n3 + 3n2 − 5n)/6 multiplications

• (2n3 + 3n2 − 5n)/6 subtractions

Moreover, in the above equation system, the system coefficients are not public or directly known by any
participant: Aij and bi depend on information known by the participants Pi and Pn. The corresponding
“preprocess” circuit requires 3n multiplications (to compute the squares of the distances in b) and (n+3)∗n
additions.

In [6] the authors handle the problem for two party environment when A = A1 + A2 and b = b1 + b2.
Even if our methodology is inspired by their work, their solution can not directly applied, since b is not a
linear combination of vectors know by the participants.

In Appendix A.1 we propose an ad-hoc protocol. We use a partially homomorphic cryptosystems (e.g.
Benaloh [2] and Paillier [15]). The algorithm exploits two key ideas:

• usage of an additive homomorfic cryptosystem for public key crypthographic, Q knows the private key
and all other participants know the corresponding public key

• computing A~s = ~b is equivalent to computing J(A)RR−1~s = J~b, where J and R are two invertible
(random) matrices.

6

UaESMC Deliverable D4.2.1 Algorithms

2.2 Collaborative cost aware routing

Internet packets are delivered through a complex network of Internet Service Providers (ISPs). Each ISP
owns an Autonomous System (AS) that participates in the Border Gateway Protocol (BGP) [16]. The Border
Gateway Protocol is exploited to make inter-AS routing decisions, allowing each ISP to independently enforce
its own policy rules and to locally compute its preferred intra-AS routing strategy. Several scenarios can
take benefits by more collaborative ASs. The number of current (2012) ASs is estimated as 40000.

An autonomous system manages a set of IP blocks. For example, an AS managing a.b.0.0/16 hosts a
contiguous block of 65536 IP addresses, ranging from a.b.0.0 to a.b.255.255. An autonomous system can
manage more than one IP block.

An AS is a network of routers and hosts (both routers and hosts are identified by IP addresses, but hosts
can not forward packets). Internally, an AS exploits a distance vector/link state algorithm to compute the
internal routing strategy. To deliver a packet between two internal hosts, only internal AS information are
used.

Some routers of the AS are connected with routers of other ASs. These routers are called border gateways.
If an AS owns more than one border gateway, it is usually referred as multihomed AS (or domain). The
routing protocol used to establish the routing tables of the gateways is BGP (path vector protocol). The
routing table allows each gateway to store the “best” next gateway to reach each possible IP block. While
the intra-routing algorithms exploits cost metrics to compute the “best path”, currently the BGP is cost
independent and allows each gateway to select the preferred path using a local policy.

2.2.1 Non-compact inter-AS routing

The network can be represented as a undirected graph G = (V,E), consisting of V vertices and E ⊆ V × V
edges. Since we focus on inter-AS routing, each vertex v ∈ V represents one border gateway.

An autonomous system is uniquely identified by a name ranged over by a1, . . . , an. We use A to refer
to the set of all autonomous system names. The function as : V → A yields the owner of a gateway. We
use gws(a) = {v | as(v) = a} to represent the set of gateways owned by the autonomous system a. An
autonomous system owning more than one border gateway is a multihomed system. We assume that there
is no multihomed system in the network.

Let W be a function (W : E → R0+) that represents the (non-negative) weights of the edges. We assume
that:

• if e = (v1, v2) and v1 ∈ gws(a1), v2 ∈ gws(a2) then only a1 and a2 know the cost W (e) (these costs
represent commercial agreement or inter-AS congestion levels, network delays)

• we consider public the network topology

A path of vertices p = v1, . . . , vn is a sequence of vertices such that vi is adjacent to vi+1. We use s(p)
and t(s) to represent the “source” (first) and “target” (last) node of a path respectively. The cost of a path
is computed according to the sum of edge weights (even if alternative approaches can require to aggregate
the costs using min or max). Let (vi, vj) be the edge connecting the vertex vi to the vertex vj , the “cost”
of a path of n nodes is defined as the sum w(p) =

∑n−1
i=1 W (p[i], p[i+ 1]).

A routing strategy:

• provides a “protocol” to jointly compute (or update in a dynamic scenario) a local data structure
∆v∈V (routing information) for each gateway

• provides a function f(∆v,m) = (v′,m′), that allows a gateway v to locally compute the next gateway
to which the packed m must be delivered to reach the destination. Notice that the routing function
can allow to rewrite the forwarded packet.

• the routing strategy musts guarantee that packets are delivered only to neighbours gateways: ∀m.f(∆v,m) =
(v′,m′)⇒ (v, v′) ∈ E.

7

UaESMC Deliverable D4.2.1 Algorithms

• dts(m) ∈ V represent the destination gateway of the message m

• the path to deliver the packedm from the gateway vs is P (vs,m) = vs if vs = dst(m) otherwise vs, P (f(∆v,m))

• the routing strategy accomplishes the best path if for all message m (destination) and source gateway
vs does not exists a path p such that s(p) = vs, t(p) = dst(m) and w(p) < w(P (vs,m)).

The standard approach is based on routing tables:

• each message m contains the destination gateway (or the destination IP block)

• the computed routing information for each gateway ∆v is a routing table RTv : V → p, namely it is a
total function on graph vertices that yields the full gateway path to reach the vertex

• the routing function f(∆v,m) = (RTv(dst(m))[0],m), namely it returns the next hop of the path
stored into the routing table and does not change the message

• The BGB protocol is cost agnostic and does not accomplish best path routes

In Appendix A.4 and Appendix A.5 we present two approaches to compute single target shortest paths.
These algorithms outputs for each gateway a single entry of the routing table, which allows to accomplish
the most cost-effective delivery of packets target to a single destination. The union of these entries of the
gateway routing tables represent a routing three. The algorithms uses two different strategies:

• the algorithm presented in Appendix A.4 implements a modified version of Belman-Ford algorithm [1,
8] in Sharemind. The algorithm allows to compute the routing three using three servers (miners) that
adopt secret sharing, requiring a centralized infrastructure

• the algorithm presented in Appendix A.5 implements a modified version of MarlinSegall algorithm [14]
in Sharemind. The algorithm allows to compute the routing information by distributing the algorithm
on several instances of Sharemind, shared among network neighbors. In the report, we also describe
how relaxing the privacy constraints can speed up the computation.

2.2.2 Truthful path allocation

Intuitively, the costs of the graphs presented in Section 2.2.1 represent the damage the gateways incur to
exchange a packet (e.g. network congestion). In this network we want to deliver a packet between two
gateways and we want to maximize of the social welfare, that in this example is to minimize the total
damage we cause.

In this settings, one of the party (i.e. an autonomous system) can lie about their own costs, reporting
higher values that cause the link to not be allocated in any packet delivery. To prevent this behavior, a
payment can be guarantee for incentive the parties (and compensate their costs).

In Appendix A.4 we investigate we investigate a payment scheme that incentives truthful reporting of the
party costs and we show how the payment each party has to receive can be computed without compromising
their private informations (the network costs).

2.3 Distributed Monitoring and Collaborative Intrusion Detection

2.3.1 Collaborative Intrusion Detection

In collaborative intrusion detection, a number of distributed agents collaborate to identify possible threats
and attacks. Attacks are usually of the type one-to-many (as in stealthy scans, where the attacker scans
large numbers of hosts simultaneously in search of software vulnerabilities) or many-to-one (as in distributed
denial-of-service attacks, where a multitude of compromised hosts overload a target system). Attacks of the
first type are particularly difficult to identify in time without collaboration of the targeted agents, since the
local events of the individual agents in isolation may not be indicative of an attack.

8

UaESMC Deliverable D4.2.1 Algorithms

Components Collaborative intrusion detection typically involves some of the following components:

• Event logs: Agents monitor local events stored as event logs to detect possible (local) attack steps.

• Alerts: A class of self-standing attack steps, such as alerts flagging incoming packets (their volume,
port, source distribution patterns) that were denied by a firewall, or viruses (their type, target, and
action taken) detected by antivirus software.

• Attack model : A model that describes the individual actions (attack steps) of a given attack (scenario)
and their possible sequencing. Attack models can be implicit, i.e. based on similarity (using data-
mining techniques to aggregate and cluster events), and explicit, i.e. based on learned or human-
provided attack scenarios described in a language that can express logical and temporal constraints
on events. Examples for attack description languages are goal trees [10], which can be viewed as the
formation trees of regular expressions or process algebraic terms, and Lambda [5], a language based
on pre- and post-conditions and scenarios.

Activities Collaborative intrusion detection typically involves several of the following activities:

• Alert correlation: Local attack steps from different agents are correlated to identify (global sequences
of) attack steps pertaining to the same attack.

• Attack identification: The so identified global sequences of attack steps are matched against the attack
model to identify a possible attack and its (global) attack state.

– Attack threads: The match is rarely perfect, since agents don’t always detect all relevant attack
steps. For this reason, (incomplete) attack threads are identified and weighted. Measures such as
step probabilities, thread length and level of completeness can be employed to identify the most
likely attacks [10].

– Holes: The (most likely attack) threads are analysed w.r.t their holes (i.e., missing attack steps).
These are further investigated (locally) by the agents in an attempt to substantiate or exonerate
the attack [10].

• Attack prediction: The identified attack threads are used to predict the future steps of the attacker,
resulting in alerts to the target agents. These can trigger a raise in the audit level of these agent to
pro-actively look for data relevant to the anticipated attack steps.

• Attack model mining : The observed event sequences can also be used to learn new attack models or
refine existing ones.

Architectures Collaborative intrusion detection systems can be based on various architectures, central-
izing or distributing the individual activities in various ways.

• Hierarchical architectures partition agents into local and global ones. The local ones monitor their
local events, while the global ones are responsible for maintaining the attack models. This division
determines the flow of information between the two types of agents.

• Fully distributed (or peer-to-peer) architectures, where each participant has two function units: a
detection unit that is responsible for the monitoring of local events, and a correlation unit that is part
of a distributed correlation scheme.

9

UaESMC Deliverable D4.2.1 Algorithms

Privacy Concerns There are various privacy concerns arising from CID:

• Participants may be unwilling to share alerts that contain sensitive information about their network or
users. Raw alerts may expose site-private topological information, proprietary content, client relation-
ships, or the site’s defensive capabilities and vulnerabilities. According to [12], sensitive fields in typical
alert formats are IP addresses (such as Source IP and Dest IP) and data contained in Captured Data
and Infected File.

• Certain attack models may be sensitive, or be used for probe-response attacks as described in [12]:
the attacker can attack a particular system and then observe the alerts published by the repository to
determine whether the attack has been detected, and if so, how it has been reported.

Data correlation systems that provide strong privacy guarantees for the participants achieve data privacy
by means of (partial) data sanitization (based for instance on Bloom filters) or by means of SMC. However,
data sanitization loses information and thus imposes an unavoidable tradeoff between data privacy and data
utility.

In previous work Sepia, a Java library for generic secure multiparty computation [4] based on Shamir
secret sharing, implements a number of algorithms (or protocols) that can be used as building blocks for
privacy-preserving collaborative network monitoring, such as:

• Event Correlation: Reconstruct a given event if and only if at least a given threshold number of agents
report the event and the aggregate weight is at least another given threshold weight. Aggregation
enables the (early) detection and characterization of attacks spanning multiple domains using data
from IDSs, firewalls, and other possible sources.

and network traffic statistics:

• Vector Addition: Privacy-preserving addition of r-dimensional vectors.

• Entropy Computation: Computation of Tsallis entropy of feature distributions such as IP addresses,
port numbers, flow sizes, or host degrees. Has been successfully applied in network anomaly detection.

• Distinct Count : Counting privately the number of agents seeing a given event.

For now, we do not envisage to contribute to this line of work.

2.3.2 Distributed Monitoring

Assume a set of distributed agents that keep logs over locally chosen observable events. When things go
wrong in the system, the usual question is the one of: “What happened?” Distributed monitoring is the
problem of computing the possible (global) executions that are compatible with the (local) logs recorded
by the agents. For very large distributed systems, however, the more meaningful problem is not the one of
computing a global solution, but the one of computing local views of the solution, in a distributed fashion.
In other words the problem is, for each agent, to infer what happened locally, that is, by communicating
with the other agents to compute all possible local executions that are (i) locally consistent with the logs,
and (ii) globally synchronizable. This problem is known as modular distributed monitoring.

An important issue is the mathematical foundation on which to base modular distributed monitoring.
Conceptually, it is natural to think in terms of partial orders between events (or event occurrences). In [7]
such a theory is developed in terms of products, projections and an efficient representation of partial orders
called trellis.

A problem worth investigating is whether and how the theory can be combined with SMC techniques for
building a library of operations as building blocks for privacy-preserving modular distributed monitoring,
and potentially also for attack identification and attack model mining, for instance using trellis to represent
attack models.

10

UaESMC Deliverable D4.2.1 Algorithms

Formal Statement of the Problem We formalise the problem as in [7].

Let L be a language over alphabet L. Then let projL′(L) for L′ ⊆ L denote the projection of L onto the
alphabet L′, defined as expected through deleting letters not in L′. Projection can be generalized to arbitrary
alphabets as follows: πL′(L)

def
= proj−1L′ (projL∩L′(L)). Notice that if L′ ⊆ L then πL′(L) = projL′(L).

The product of two languages L1 and L2 over alphabets L1 and L2, denoted L1 ×L L2, is the largest
language L over L1 ∪ L2 such that projL1

(L) = L1 and projL2
(L) = L2. In terms of finite automata, this

corresponds to a weakly synchronous product1.

We assume a set I of agents (or sites). For each site i ∈ I we are given a local alphabet of actions
(or events) Li partitioned into the observed (or recorded) actions Lo,i and unobserved actions Lu,i, a local
behaviour (or set of executions) given as a language Li ⊆ L∗i , and a local observation (or log) ωi ∈ L∗o,i
consistent with Li, i.e., ωi ∈ projLo,i

(Li).
Let L def

= ×L
i∈I Li and let Ω

def
= ×L

i∈I {ωi}. The product L ×L Ω represents all global executions that
are consistent with the logs, and can be equivalently represented by the product ×L

i∈I (Li ×L {ωi}), where
Li ×L {ωi} represents all local executions of site i consistent with the respective local log ωi. The problem
of distributed monitoring is formally defined as computing the map:

(ωi)i∈I 7→ (projLi
(L ×L Ω))i∈I (2.1)

In Appendix A.2 we present an algorithm to address distributed monitoring. In particular, we focus on
identifying the information leaked in different scenarios and we show how the problem can be addressed by
privately computing language intersection if the parties involved are two. In Appendix A.3 we implement
privacy preserving intersection of regular languages. Our algorithms start from the Deterministic Finite
Automaton representation of the input languages and compute the minimization of the product automata.

2.3.3 Collaborative Intrusion Detection on top of Distributed Monitoring

Attack Identification Assuming an attack model that describes the possible event sequences of an attack
scenario, the task is to match the local events of the agents against this model. The privacy requirements
are that this match should not leak information between the agents other than the result of the match. The
result of the computation can be used by the local agents to discover if a single attacker is coordinating
activities that involve the IT infrastructures of the agents.

We formulate a first version of the problem abstractly as follows, using our notation and set-up from
Section 2.3.2. The attack model is defined extensionally through a language LA over an abstract alphabet LA

of events (attack steps). We assume that the local agents own as private input event logs2 in the form of
strings ωi, while a dedicated global agent3 privately owns the attack model LA. Our task is to decide:

LA ∩
(
L ×L Ω

)
6= ∅

in a privacy-preserving fashion, using SMC.

A variation of the problem is the one of partial match, based on some threshold measures on the length
of strings and the degree of matching. The partial match should be able to yield a match measure for a log
that contains events not expected by the attack model:

• yielding match metric for “imperfect” match allows to identify the “best matching” attack model;

• an unmatched alert should be notified only to the corresponding reporting local agent;

1The adequacy of a synchronous product in the context of distributed systems (usually using asynchronous message passing
for communication) can be questioned. However, by interpreting ×L as language composition in a more general sense, the
proposed formalization remains meaningful.

2We assume that an all the event logs correspond to a unique instance of a coordinated attack. Splitting real logs into attack
instances is in charge of the correlation activities.

3The exact architecture needs to be thought over: is the attack model to be kept by a local agent, and is the attacker itself
a local agent? If yes, what are their alphabets?

11

UaESMC Deliverable D4.2.1 Algorithms

• unmatched alerts can be used as feedback to the correlation algorithms, which usually exploit data-
mining techniques.

An additional task is to identify holes as well as possible next events. Similarly to partial match, the
holes discovered can be used as feedback for the correlation algorithms.

Another variation of the above is a setting where the attack model is shared privately between the local
agents. A particular scenario involves the language L built as the product of the agent languages Li. In
this settings, the agents are interested to keep their languages secret, since these can reveal vulnerabilities
and the internal IT infrastructure.

Attack Model Mining In this setting there is no attack model in the beginning. Instead, the task is to
compute one from the individual logs of the agents.

We formulate a first version of the problem abstractly as follows. Again, we assume the local agents
owning as private input event logs in the form of strings ωi. The task is to compute in a privacy-preserving
fashion the language:

L ×L Ω

Next, the problem can be tied to a particular attack description language, using techniques from data
mining or process mining. The latter problem has been studied in detail in [3] (without considering privacy),
where a number of process mining techniques are compared in the context of process trees, a notion closely
related to the goal trees described in [10]. In this setting the learned model need not be exactly the set
defined above, but can approximate it, balancing suitably between a number of quality measures. A possible
task can be to develop privacy-preserving versions of some of these algorithms.

SMC-based privacy-preserving data mining techniques are developed in [13]. Again, there is the choice
of making the learned model known to all agents, making it known to only one global agent, or sharing it
privately between the agents.

12

Bibliography

[1] Richard Bellman. On a routing problem. Technical report, DTIC Document, 1956.

[2] Josh Benaloh. Dense probabilistic encryption. In Proceedings of the workshop on selected areas of
cryptography, pages 120–128, 1994.

[3] Joos C. A. M. Buijs, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. On the role of fitness,
precision, generalization and simplicity in process discovery. In OTM Conferences (1), pages 305–322,
2012.

[4] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas A. Dimitropoulos. SEPIA: Privacy-
preserving aggregation of multi-domain network events and statistics. In USENIX Security Symposium,
pages 223–240, 2010.

[5] Frédéric Cuppens and Rodolphe Ortalo. LAMBDA: A language to model a database for detection of
attacks. In Recent Advances in Intrusion Detection, pages 197–216, 2000.

[6] Wenliang Du and Mikhail J Atallah. Privacy-preserving cooperative scientific computations. In csfw,
volume 1, page 273. Citeseer, 2001.

[7] Eric Fabre and Albert Benveniste. Partial order techniques for distributed discrete event systems: Why
you cannot avoid using them. Discrete Event Dynamic Systems, 17(3):355–403, 2007.

[8] Lester Randolph Ford. Network flow theory. 1956.

[9] Roberto Guanciale. Identification of application scenarios, January 2013. UaESMC Deliverable 4.1.

[10] Ming-Yuh Huang, Robert J. Jasper, and Thomas M. Wicks. A large scale distributed intrusion detection
framework based on attack strategy analysis. Computer Networks, 31(23-24):2465–2475, 1999.

[11] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party computation using
garbled circuits. In USENIX Security Symposium, volume 201, 2011.

[12] Patrick Lincoln, Phillip A. Porras, and Vitaly Shmatikov. Privacy-preserving sharing and correlation
of security alerts. In USENIX Security Symposium, pages 239–254, 2004.

[13] Yehuda Lindell and Benny Pinkas. Secure multiparty computation for privacy-preserving data mining.
IACR Cryptology ePrint Archive, 2008:197, 2008.

[14] Philip M. Merlin and Adrian Segall. A failsafe distributed routing protocol. Communications, IEEE
Transactions on, 27(9):1280–1287, 1979.

[15] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EURO-
CRYPT, pages 223–238, 1999.

[16] Yakov Rekhter and Tony Li. A border gateway protocol 4 (bgp-4). 1995.

13

	1 Introduction
	2 Overview
	2.1 ``P2P'' positioning system
	2.2 Collaborative cost aware routing
	2.2.1 Non-compact inter-AS routing
	2.2.2 Truthful path allocation

	2.3 Distributed Monitoring and Collaborative Intrusion Detection
	2.3.1 Collaborative Intrusion Detection
	2.3.2 Distributed Monitoring
	2.3.3 Collaborative Intrusion Detection on top of Distributed Monitoring

	Bibliography

