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Executive Summary:
SMC application framework

This document summarizes deliverable D5.3 of project FP7-284731 (UaESMC), a Specific Targeted Research
Project supported by the 7th Framework Programme of the EC within the FET-Open (Future and Emerging
Technologies) scheme. Full information on this project, including the contents of this deliverable, is available
online at http://www.usable-security.eu.

The report contains the description of choices that an SMC implementor faces in terms of the compu-
tational task to be implemented, and the deployment environment. The report discusses the options the
implementor has when designing the SMC protocol, and argues, which ones should be chosen in each par-
ticular situation. We find that there exists a sufficiently rich set of SMC protocols for primitive operations,
such that large applications for many different kinds of tasks can be composed.

The richness of privacy-preserving applications already enabled by existing SMC protocols is demon-
strated by a book “Applications of Secure Multiparty Computation”, published by IOS Press in Au-
gust 2015. The book has been edited by the performers of UaESMC. Throughout this report, we re-
fer to the chapters of this book, showing how the choices made by the SMC implementor work out
in practice. The electronic version of the book is available under the Creative Commons Attribution-
NonCommercial 3.0 (CC BY-NC) license and downloadable from http://ebooks.iospress.nl/volume/
applications-of-secure-multiparty-computation.
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Chapter 1

Introduction

One of the main outcomes of the UaESMC project, the UaESMC framework presents a coherent view of
applicability of various secure computing techniques to various computational problems. The framework is
intended to help an entity, the “SMC implementer”, responsible for designing, implementing and deploying
a privacy-preserving computation, that collects inputs from two or more entities and either publishes the
outputs or makes them available to certain parties. The framework allows the SMC implementer to make
the best choices regarding the underlying representations for private data, the used SMC protocols, the
incentives to participate and follow the protocol, etc. In this manner, the framework facilitates a wider
take-up of SMC techniques. It reflects the experience of UaESMC partners in constructing and executing
SMC protocols for different tasks, obtained from activities in UaESMC and in other, concurrently-running
projects.

To show the versatility and applicability of SMC, we have published a book [33] describing protocols
and deployment models for solving many different problems in privacy-preserving manner. Many of the
techniques described there have been developed in the UaESMC project. The examples provided by the
book are intended to be taken up by developers and used in their privacy-preserving applications. There are
already several examples where this has happened: the privacy-preserving statistics suite [33, Chap. 4] has
been used to run a study on the future earnings of graduates and drop-outs of ICT curriculaﬂ the methods for
oblivious parallel data access [33, Chap. 6] have been used in privacy-preserving spam filtering in a project
funded from DARPA’s PROCEED (PROgramming Computations on EncryptEd Data) programme; the
SMC deployment model [33] Chap. 1] has been adopted in the FP7-funded integrated project PRACTICE
to discuss the application scenarios [20]. In fact, we consider the published book to be the main outcome
of Task 5.3. The chapters of the SMC applications book [33] have been attached to this deliverable as an
appendix.

"http://cyber.ee/en/research/research-projects/prist/
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Chapter 2

The framework

When faced with an implementation of a privacy-preserving computation, the SMC implementor has to
consider a number of aspects of the computation itself, the interfaces for collecting inputs and producing
outputs, and the incentives of the participants. These consist of

e The number of involved parties, including the data providers and the parties due to learn the results of
the computation (see also the characterization of the roles of different parties in an SMC deployment,
given in [3]). Meaningful values are “selected few” (e.g. a short list of certain government agencies)
and “many” (e.g. members of a social network; or voters).

e Computational capabilities of the involved parties. They may be running their own computational
infrastructure and may be capable of deploying an SMC node. Or they may be able to manage a
cloud-deployed SMC node. Or they may have little computational ability, limited to uploading their
data to the computation and/or receiving the results. Possibly, there are different classes of involved
parties with different capabilities.

e The details of the computational task itself. We discuss them below.

e The motivation of the parties to follow the protocol, including being truthful in inputting data, and
in performing the steps of the protocol as they should.

e Additional infrastructure that the implementor may use, or must use. This may include the public
key infrastructure of the country, in which the parties reside, and which is used to identify the parties
or bind their messages to them. It may also include the bitcoin infrastructure, which may be used to
create monetary incentives or penalties for the parties to follow the protocol.

We consider the primary applications for privacy-preserving computations to consist of the analysis of a
data-set, followed by making a decision that optimizes the objectives of the participants. Either part may
be (almost) missing. The analysis may be a statistical analysis, or a search for anomalies, or learning new
patterns through data-mining. A typical decision-making process is the running of an auction, or agreeing
on the details of a contract that is most beneficial to all participants, or establishing a common business
process.

We will now consider the different aspects and see how they affect the choice of protocols. If different
parts of the computational task have different characteristics, then it also may make sense to use different
protocol sets for them, and convert as necessary, as long as the parts are sufficiently separated, such that
not too many conversions are necessary [22), [12].

2.1 Number and capabilities of parties

Considering the current state of the art, our suggestion is to always try to limit the number of computing
parties. These are the parties that participate in the computation more substantially than providing the
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inputs (possibly by secret-sharing or encrypting them) and/or receiving the outputs. While SMC with
many parties has been considered [53] [6], the existing protocols are probably too inefficient for practical
applications [43].

Using a small number of parties, the choice is between protocol sets based on garbled circuits [52] [51],
and protocol sets based on secret sharing [44] 15, [IT], [5]. The choice between them mainly depends on the
details of the computational task. For certain tasks (discussed below), protocols based on additively homo-
morphic encryption [8] may make sense, but there are probably not many such tasks. Fully homomorphic
encryption [16] has not sufficiently matured to be generally considered in deployed protocols, but, again it
is possible that it may make sense for applications with small multiplicative depth [4§].

In any case, if the number of parties providing inputs is large, then they secret-share their inputs among
the computing parties. This applies for both garbling circuit and secret sharing based protocols. The
possible deployment schemes are discussed in [33] Chap. 1].

Depending on the computational abilities of parties, the computations of the SMC protocol may be exe-
cuted by the parties themselves, or be outsourced to third parties (cloud providers). The SMC implementor
has to make sure that at least the computing parties are able to manage a computation. Less computational
ability is needed to give inputs to the SMC protocol, examples are provided in [33, Chap. 12].

2.2 Privacy-preserving computations

One general remark is in order before going to the details of computations. In order to make possible the
arguments about the security and privacy of the implemented application, one should always use composable
protocols [33 Chap. 2]. Let us now consider different details of the computational task.

2.2.1 Data types

Data manipulated by the computation may be numerical or categorical. The operations on numeric data
include arithmetic operations. Both kinds of data may be subject to equality and inequality comparisons.
Numeric data includes integers and real numbers, as well as elements of certain finite rings and fields.
Categorical data includes strings, graphs, and other discrete structures. Both types of data may be stored
in databases.

Arithmetic with integers (modeled as elements of some sufficiently large ring or field) is naturally sup-
ported by secret sharing based protocol sets. For real numbers, there exist protocols for fixed-point [7]
and floating-point [24, B0] representations, covering both the arithmetic and relational operations, as well
as elementary and statistical functions. One should note that the protocols for floating-point numbers are
in general much more expensive, especially for addition, because they have to find a suitable value for the
exponent of the result.

Secret sharing based SMC protocol sets usually support some operations on private data without any
communication between the computing parties. Typically, this operation is addition in the ring or field
underlying the secret sharing mechanism. Different secret sharing schemes may also support certain more
complex operations with an overhead equal to much simpler operations. For Shamir’s secret sharing [15],
the scalar product of two vectors of private values only requires as much communication between the parties
as a single multiplication. For three-party additive secret sharing as employed in SHAREMIND [5], the
computation of all pairwise products of n private values only require O(n) communication, not O(n?).

Protocols based on garbled circuits naturally allow the privacy-preserving execution of boolean circuits.
The arithmetic operations have to be implemented on top of them. Significant effort has been spent on
devising smaller circuits for arithmetic operations [28] or minimizing the size of circuits expressing the
entire computations [29] 14]. Experience from integrated circuit design can also be used to minimize the
size of the circuit [45]. In general, we believe that if the application is heavy on numeric computations, then
it should use secret-sharing based SMC protocols, unless Sec. gives strong reasons to choose otherwise.

On the other hand, we tend to manipulate categorical data using boolean circuits. Here the disadvantages
of garbled circuits are smaller, even though purely communication-wise, secret sharing based protocol sets
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should still be more efficient. Note that the comparisons of numeric values are also done using boolean
circuits. Hence the SMC implementor has to choose, where to represent the private values used by the
computation as numbers, and where to represent them as bit-vectors.

Examples of numerically heavy SMC protocols are given in [33, Chap. 4], while protocols working on
categorical data are demonstrated in [33, Chap. 7.

2.2.2 Persistent storage

The SMC application may need database support for private values. The shares of secret-shared values can
be stored by the computing parties using any suitable database technology, and recalled in the later stage of
computations. In a similar manner, it is possible to store the keys and ciphertexts corresponding to the bits
that we want to store in a stateful computation using garbled circuit based SMC protocols. The computing
parties have to treat this database with care, not allowing it to be leaked.

Alternatively, the private values that must be stored between several executions of the private com-
putation may be encrypted inside the SMC protocols [23, 9, B5]. In this manner, only the shares of the
encryption key have to be carefully stored. The encrypted database is not sensitive by itself. On the other
hand, the costs of the execution of encryption and decryption operations on top of SMC protocols are not
trivial.

2.2.3 Complexity of computation, control flow and data access patterns

Some of the inputs, intermediate results and outputs of privacy-preserving computations are secret, while
others are public. Public values may either be known before computation, or become known during the
computation.

The operations that a computation performs may depend on data it is working on. If the data access
patterns or the control flow of a privacy-preserving computation depends on private values, then the over-
heads of SMC protocols are higher and the deployment of specific protocols to reduce these overheads may
be necessary. Having a choice between two algorithms, where the control flow or data access patterns of
only one of them depend on private data, while the complexities of the algorithms are otherwise similar, it
usually makes sense to choose the other algorithm. An example of such choice is presented in [33, Chap. 4.7].
In general, the following issues affect the choices of SMC protocols:

e parallelizability of the computation;
e complexity of data access patterns;
e privacy level of some intermediate values.

Parallelizability has perhaps the largest effect on our choice of protocols. Using SMC protocols based on
secret sharing, each non-free operation (typically, additions are free) on private values requires one or more
round-trips between the parties of the computation. Hence the round complexity of secret sharing based
SMC protocols is at least proportional to the depth of the circuit expressing that computation. The round
complexity of garbled circuit based protocols may be constant. If the computation we want to perform is
inherently non-parallelizable, or parallelizable only with large overheads, then we may want to use garbled
circuits.

If the data access patterns of a computation depend on private data, then we must use techniques of
oblivious RAM (ORAM) to read the data without leaking the private addresses. Simplest techniques [34]
have overheads proportional to the size of the memory from which we're reading. There exist ORAM
protocols with polylogarithmic overheads, they have also been implemented on top of SMC protocols based
on garbled circuits, enabling privacy-preserving memory accesses according to private addresses [10] 50]. If
the memory access patterns are more restricted, e.g. the privacy of patterns is caused through the use of
certain data structures, then even smaller overheads are possible [47, [17].
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For SMC protocols based on secret sharing, there also exist techniques for oblivious parallel array ac-
cesses [32]. These techniques are efficient only if many accesses are performed in parallel. As secret sharing
based protocols should be parallelized anyway, this is not a major restriction. An example of employing the
oblivious parallel array access protocols is given in [33, Chap. 6].

The protocols for oblivious RAM have also been implemented on top of secret sharing based SMC
protocols [26]. We believe that such combination of techniques has little utility in large SMC applications
— the parallelism requirement of these SMC protocols is not answered by the used [46] ORAM methods.

For certain algorithms built on top of SMC protocols, the ability to declassify values in the middle of
computation, and use them in the remaining part, significantly speeds up the execution. A well-known
example is sorting, where methods with data-dependent memory access patterns are more efficient than
oblivious methods based on sorting networks. Non-oblivious methods may also be secure if preceeded by an
oblivious shuffle [21] 4] (see also [33, Chap. 4.3]). Declassification also supports more general transformation-
based protocols for certain computational problems [33, Chap. 11]. SMC protocols based on secret sharing
support declassification. Garbled circuits do not naturally support the declassification of values in the
middle of computation. It can be emulated by splitting the computation to several parts and increasing the
round complexity. The additional round complexity may be tolerable, if there is only a small number of
declassification rounds (as is the case for sorting).

Certain complexities of the computational task do not affect much the choice of SMC protocol sets
for privacy-preserving implementation. There are no good methods to deal with branchings based on
private values. In privacy-preserving computation, both branches have to be evaluated and their effects
combined [42]. This applies both for secret sharing based and garbled circuit based SMC protocols. To
reduce computational overhead, one should try to identify any similarities in both branches, and execute
them only once [39].

Garbled Random Access Machine [18], 25| [49] is a recent approach that does asymptotically reduce the
cost of branching. In this setting, both the code of the machine and its memory are stored in oblivious
RAM. Using MPC, the next instruction operation is implemented, including the client-side operations for
oblivious RAM. The overheads of this approach make it currently unlikely to be competitive with more
straightforward privacy-preserving implementations of algorithms.

2.2.4 Benefit of misbehaving

The computing parties may deviate from the protocol, if they wish to learn something about the private
inputs, or want to change the outcome of the computation. The SMC implementor has to realistically
judge if this may be the case. Possibly the computing parties can be trusted to faithfully follow the SMC
protocols, because they have nothing to gain from learning the data or changing the outcome. Protocols
secure only against passive adversaries may be up to two orders of magnitude faster than protocol secure
also against active adversaries. The overhead of active security has two sources. First, the protocols have
more steps, performing more checks. Second, for protocols based on secret sharing, the underlying fields
have to be larger, because the security guarantees often depend on the size of the field. In particular, if the
protocol works with boolean values, they still have to be shared over fields of size e.g. 40 bits. Security of
SMC protocols against passive or active adversaries is discussed in [33, Chap. 1].

We believe that in most cases, full security against malicious parties is not necessary: a fear of getting
caught with deviating should be enough to make the party follow the protocol. Verifiable SMC protocols
have the potential to be much more efficient than protocols secure against fully malicious parties. We discuss
verifiability in [33, Chap. 9] and show that for secret sharing based SMC protocols, they can offer a much
richer set of primitive protocols, which translates to more efficient SMC applications.

The three-party protocol set of SHAREMIND based on additive secret sharing is secure only against
passive adversaries, but it is private also against active adversaries, meaning that an active adversary can
change the outcome of the private computation, but cannot anything it could not have learned if it had
followed the protocol [40]. Using such protocol set, we do not have to verify all computations performed by
computing parties. Instead, we can add verification routines into the SMC application and only verify, that
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the parties followed the protocol while executing the verification routines. There are many functionalities
that are easier to verify than to compute; linear programming and sorting are among the most well-known
examples. Such verification is discussed in more detail in [33, Chap. 10].

The methods for achieving better-than-passively secure SMC protocols are still an active research area
and further breakthroughs may be expected. In [36], an actively secure secret sharing based SMC protocol
is used to construct garbled circuits, resulting in a constant-round actively secure protocol with better
performance than the usual cut-and-choose based method for achieving actively secure garbled circuits.
In [37], the garbling party is split into two, resulting in a three-party garbled circuit based SMC protocol,
secure against one malicious party, and with almost the same efficiency than a passively secure garbled
circuit.

The input parties may also misbehave by inputting data into the computation which does not match
with the state of the real world and their knowledge. In this case the application itself has to be modified,
possibly with the penalties for misreporting built in [33, Chap. 8]. The additional infrastructure available
for the SMC parties may be used for defining the incentives.

2.2.5 Additional infrastructure

The parties may be identified by public keys, which are distributed using a well-recognized public key
infrastructure. The SMC implementor may choose to incorporate this infrastructure in the SMC application,
such that together with the outcome of the computation, the signatures on that outcome are also obtained.
Also, if a cryptocurrency infrastructure (e.g. Bitcoin [38]) is available, then the agreed monetary transfers
between participants could be a part of the outcome. Such signatures should probably be computed using
SMC protocols based on secret sharing, because the boolean circuits for computing them are very large. We
have discussed these options in [2]. If they are employed, then at least verifiable protocols should be used.

2.3 Additional considerations

2.3.1 Benefit of obtaining the result

Certain SMC protocol sets ensure that if the adversarial parties learn the result of the computation then all
parties do. Such protocols are called fair. These protocols are typically expensive, providing security also
against malicious adversaries. With the help of cryptocurrencies (e.g. Bitcoin) we can compile any SMC
protocol into a fair one [I], 27]. The methods in this area are very recent and we expect further improvements
in their efficiency, affecting both the construction of SMC protocols and the functionality provided by the
Bitcoin ledger.

SMC techniques protect the intermediate values of computation from eavesdropping. They give no
privacy guarantees for the outputs of the computation. If the outputs can be sensitive, e.g. if the outcomes of
the statistical analysis could potentially give away something about unique individuals, then the computation
itself has to be designed with appropriate safeguards. For statistical analysis type of tasks, differential
privacy [13] is a common mechanism for ensuring the absence of leaks through outputs. The use of this
mechanism brings its own overheads, but as discussed in [33, Chap. 5] and also demonstrated in [41], these
overheads are not prohibitive at all and will likely cause only a minor increase in the running time of the
SMC protocols.

2.3.2 Cost of information leakage

For certain tasks, there exist significantly faster SMC protocols, if a bit of the private information may be
leaked. When working with private databases, we may have to join two tables according to a private index.
A protocol for this is presented in [41], making use of techniques similar to [33, Chap. 6]. However, if we are
willing to leak the equality patterns of the indices, then we can join the tables by first encrypting all indices
using a pseudo-random function (typically AES), making them public, and doing the join in public [35].
This is asymptotically faster than a fully private join.

10
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As a rule, SMC protocols do not hide the size of the tasks they are working on. The sizes may be hidden
by padding, but this increases the effective size of the tasks and makes the protocols slower. In [33, Chap. 7]
and in [31], [19] we see several examples of selectively opening the sizes of certain components of the task, in
order to reduce the amount of padding and make the execution faster.

We do not have a general framework for deciding which parameters of the task may be leaked, and
how the leaks can be quantified. Currently, the SMC implementor must weigh the possible choices. The
development of a quantitative approach to measuring the leakages is a subject of future work, currently
considered by agencies funding exploratory researcfﬂ

"http://www.darpa.mil/program/brandeis
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