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Executive Summary:
Strongly Truthful and Composable Mechanism Design

This document summarizes deliverable D3.2 of project FP7-284731 (UaESMC), a Specific Targeted Research
Project supported by the 7th Framework Programme of the EC within the FET-Open (Future and Emerging
Technologies) scheme. Full information on this project, including the contents of this deliverable, is available
online at http://www.usable-security.eu.

In this report we are mostly presenting results from our recent paper [6]. We are presenting a new,
extended utilities model for mechanism design settings which can incorporate externalities, such as malicious
and spiteful behavior of the participating agents. Based on this, a new notion of strong truthfulness is
presented and analyzed, which is based on the principle of “punishing” players that lie. Due to this,
strongly truthful mechanisms can serve as subcomponents in bigger mechanism protocols in order to “boost
truthfulness” in settings with externalities and achieve a kind of externalities-resistant performance. The
related solution concept equilibria are discussed. This decomposability scheme is rather general and powerful,
and we show how it can be also adapted to the case of the well known mechanism design problem of scheduling
tasks to machines for minimizing the makespan.
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Chapter 1

Foundations

In this chapter we are going to present some fundamental notions from the area of Mechanism Design (MD),
upon which we are going to build our exposition and our results in the subsequent chapters. We deliberately
choose to make this presentation based on a simple, single-item auction paradigm, in order to demonstrate
more clearly both the intuition and the essence of these notions and not get lost into the technicalities
of the general models which, after all, we are not going to need for the purposes of this deliverable. The
reader of course can find many very good references including more formal and general introductions to the
fascinating area of (Algorithmic) Mechanism Design (see e.g. [9, 10]).

1.1 Basic Notions from Game Theory and Mechanism Design

Assume the following traditional mechanism design setting, in particular a single-item auction scenario: We
have n players (also called agents), each of whom is willing to pay ti, i = 1, 2, . . . ,m, in order to get the
item. These are called the agents’ types, and t = (t1, t2, . . . , tn) is the type profile. Lets assume that all
these belong to some domain T , where in our particular auction setting it’s a natural assumption to consider
T = R+. This is private information of the players, who report it to the auctioneer in the form of valuations
(also called bids in the context of auctions) vi, i = 1, 2, . . . ,m. The reason we discriminate between types
and valuations is that the players, as we will see shortly, may have a reason to lie about their true types
and misreport some vi 6= ti. Given the input by the players, i.e. the bid profile v = (v1, v2, . . . , vn), the
auctioneer need to decide who gets the item and how much is she going to pay for that. More formally, a
mechanism M = (a, p) comprises of an allocation vector a = a(v) = (a1(v), a2(v), . . . , an(v)) ∈ [0, 1]m and
a payment vector p = p(v) = (p1(v), p2(v), . . . , pn(v)) ∈ Rn+. If our mechanism is a deterministic one, ai(v)
is simply an indicatior 0–1 variable denoting whether player i wins the item or not, while if we allow for
randomized mechanisms, ai(v) denotes the probability of player i winning the item. In this latter case, we
must make sure that

∑n
i=1 ai(v) ≤ 1 for all v ∈ Tn. Also, agent i will have to submit a payment of pi(v)

to the mechanism. We define player’s i utility to be his total “happiness” after taking part to the auction
minus the payment he has submitted, formally:

ui(v|ti) = ai(v) · ti − pi(v). (1.1)

Notice the notation ui(v|ti) and the different usage of valuations and types in expression (1.1). In case of
truth-telling, i.e. honest reporting of vi = ti, we will simplify notation to

ui(v) = ai(v) · vi − pi(v). (1.2)

We call these quasilinear utilities, due to the special form of these expressions, and in particular the linear-
form connection between a player’s utility and only her own type ti.

Surprisingly enough, if we look a little closer we can see that we have already formed a game (see
e.g. Chapter 2 of Deliverable 3.1): the players’ strategies are exactly their valuations and their goal is to,
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each one of them, being completely rational, to selfishly maximize her own utility. So, we can use standard
solution concepts and in particular equilibria in order to talk about possible stable states of our auctions.
For example, the most fundamental notion that underlines the entire area of Mechanism Design, is that
of truthfulness (also called sometimes incentive compatibility or strategyproofness). Intuitively, we will say
that a mechanism is truthful if it makes sure that no agent has an incentive to lie about her true type:

Definition 1.1.1 (Truthfulness). A mechanism M = (a,p) is called truthful if truth-telling is a dominant-
strategy equilibrium of the underlying game, i.e. ui(vi,v−i|vi) ≥ ui(ṽi,v−i|vi) for every player i, all possible
valuation profiles v ∈ Tn and all possible “misreports” ṽi ∈ T .

In case of randomized mechanisms, the above definitions are being naturally extended by taking expec-
tations of the utilities (truthful in expectation mechanisms).

Being implemented in dominant strategies, truthfulness is a very stable and desirable property, which
we want all our auction mechanisms to satisfy. It allows us to “extract the truth” from the participating
parties and thus be able to accurately design the protocols for the goals we want to achieve. A celebrated
result by Myerson gives us a powerful and simple characterization of truthful mechanisms and also helps us
completely determine a mechanism simply by giving just its allocation function a:

Theorem 1.1.2 (Myerson [8]). A mechanism M = (a,p) is truthful if and only if

1. Its allocation functions are monotone nondecreasing, in the sense that

vi ≤ v′i =⇒ ai(vi,v−i) ≤ ai(v′i,v−i)

for every player i, all valuation profiles v−i and all valuations vi, v
′
i.

2. The payment functions are given by:

pi(v) = ai(v)vi −
∫ vi

0
ai(x,v−i) dx. (1.3)

Based on this, one can show an other elegant and concise, analytic characterization of truthful mecha-
nisms:

Theorem 1.1.3. A mechanism is truthful if and only if the players’ utilities that it induces are convex
functions (over Tn).

1.2 Fundamental MD Problems

In this section we very briefly present two of the most fundamental mechanism design domains in Algorithmic
Game Theory, as well as the associated optimization objectives. These are the predominant motivating
examples that move the entire field forward and also serve as the basis for our exposition in this deliverable
both technically and in spirit.

1.2.1 Auctions: Welfare and Revenue

The fundamental single-item auction introduced in Section 1.1 can be generalized to the following m items
additive valuations auction setting where now the allocation a of a mechanism M = (a,p) is an n × m
matrix a = {aij} ⊆ [0, 1]n×m where aij represents the probability of agent i getting item j, = 1, 2, . . . , n,
j = 1, 2, . . . ,m. The inputs to the mechanism are bid profiles b ∈ Tn×m, T = R+, where bij is player’s i
valuations for item j. Of course, we must make sure that for every possible input b the selected outcome
a(b) must not assign any item to more than one agent, i.e.

n∑

i=1

aij(b) ≤ 1 for all items j = 1, 2, . . . ,m. (1.4)
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When we design auction mechanisms we are usually interested in maximizing either the combined “hap-
piness” of our society, meaning the sum of the valuations of the players that receive items, or the auctioneer’s
profit, i.e. the sum of the payments he collects from the participating agents. So, we define the social welfare
of mechanism M on input b to be

WM(b) =
n∑

i=1

m∑

j=1

aij(b)bij

and its revenue

RM(b) =
n∑

i=1

pi(b).

The most well-known auction is without doubt the VCG auction, named after the work of Vickrey [12],
Clarke [4] and Groves [7]. In the simple single-item setting, this mechanism reduces to the simple Vickrey
second-price auction which gives the item to the highest bidding agent but collects as payment the second-
highest bid. In that way, it ensures truthfulness by not giving an incentive to the wining agent to misreport
a lower bid, since her payment is independent of her own bid and depends only on the bids of the other
players. And, above all, this mechanism maximizes social welfare “by definition”.

Formally, generalizing these ideas to the setting of m items, the VCG auction is the mechanism with
allocation rule

a(b) = argmax
α∈A

n∑

i=1

vi(α(b)) = argmax
α∈A

n∑

i=1

m∑

j=1

αijbij for all b ∈ Tn×m, (1.5)

and payments

pi(b) = max
α∈A

∑

j 6=i
vj(α(b))−

∑

j 6=i
vj(a(b)) for all b ∈ Tn×m. (1.6)

The underlying idea is that, first of all the allocation rule (1.5) ensures that the social welfare is the optimal
one, and then the payments (1.6) are such that they “internalize the externalities” of every player i, that
is, intuitively, we charge player i the “harm” that her participation in the auction causes to the rest of the
society.

1.2.2 Scheduling: Minimizing Makespan

The Scheduling domain is essentially an additive multi-item auction setting (see the previous Section 1.2.1)
with the modification that players are not trying to maximize their utilities, but to minimize them: they are
“cost” functions. This of course results in a different model, and the exact nature of the relation between
the two domains is not completely clear at the moment. The mechanism design version of the problem has
been first studied by Nisan and Ronen in their seminal paper [9] and has arguably been the most influential
paper in the area of algorithmic mechanism design. So, in Scheduling settings we have n machines (players)
and m tasks (items). Each machine reports to the mechanism designer the time she would need to process
every item, in the form of a time matrix (type profile) t = {tij} ⊆ Tn×m, T = R+, where tij is the processing
time of machine i for task j. A feasible allocation is an assignment of tasks to players, given (exactly as in
the case of additive auctions) by an allocation matrix a = {aij} ∈ {0, 1}n×m, aij = 1 if and only if machine
i executes task j. Machine’s i total valuation is the sum of the processing times for each individual task
assigned (additive valuations)

∑m
j=1 aijtij . Each machine’s resulting cost is ci(t) =

∑m
j=1 ai j(t)ti j − pi(t),

where pi(t) represents the payments with which we compensate machine i in order to “motivate” her to
take part in the execution.

Especially with the emergence of the Internet as the predominant computing paradigm, it is natural
to assume that these “machines” would act selfishly, just caring about minimizing their own costs ci(t),
and possibly misreport their true processing times towards this ends. So, a game theoretic approach to the
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classical task allocation problem under the added truthfulness constraint is both interesting and necessary.
The standard objective is to design truthful mechanisms that minimize the makespan

Makespan(t) = max
i

m∑

j=1

aij(t)tij ,

that is, the time it would take the slowest machine to finish the processing. Again, we will also require that
no task is unprocessed, thus (1.4) becomes

n∑

i=1

aij(t) = 1 for all tasks j and time matrices t ∈ Tn×m. (1.7)

This is known as the Scheduling problem in parallel unrelated machines. When we consider the fractional al-
locations variant of the scheduling problem, we allow {aij} ∈ [0, 1]n×m, while still demanding condition (1.7).
Fractional allocations are essentially randomized mechanisms for the non-fractional version of the problem.
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Chapter 2

Externalities and Challenges

In this chapter we describe the notion of externalities in mechanism design settings and present the game
theoretic and algorithmic challenges that they introduce. This discussion is inevitably intertwined with
challenging the fundamental notion of traditional truthfulness itself, and thus this chapter forms essentially
the motivation for our main results of this deliverable, presented in Chapter 3.

2.1 Externalities in Mechanism Design

So, what are externalities? A fundamental assumption throughout Game Theory and Mechanism Design is
that all participating players (agents) are fully rational and act selfishly : they have their own well-defined
utility function (see e.g. (1.2)) and they only care about optimizing this function. This can be maximizing
“satisfaction” when they want to buy an item in an auction, or minimizing their cost when they are machines
that get to execute tasks (scheduling problem, see section 1.2.2). Usually, this utility function optimization is
considered myopic, in the sense that players do not care about variations on other players’ achieved utilities
as far as these variations do not effect their own utility levels. For example in a standard single-item auction
setting, if some player does not get the item (thus achieving a zero utility) she is indifferent (i.e. her utility
does not change) towards how much the winning bidder is going to pay for obtaining the item and, even
more, she doesn’t care about this bidder’s identity.

But is this really a “natural” or “expected” behavior when we think of everyday social interactions?
Experiments show that bidders can overbid, possibly risking of ending up with negative utilities, just for
the “joy of winning” in case they get the item. Or, on the other end, if they do not manage to win the
item, overbidding will drive prices up in order to “harm” the other winning agent(s), an arguably “spiteful”
behavior.

The above demonstrate examples where participants in a mechanism behave seemingly irrationally, their
happiness not only being a function of just their own “core” utility but also being affected in complex ways
by the other players’ utilities. We will call such effects on the modeling of our agents’ happiness externalities,
to emphasize the “third-party” nature of the interaction. Of course, externalities are not only negative like
the examples we gave before. They can be positive, “altruistic” in nature, e.g. a loving couple taking part
at the same auction: one partner may be happy to lose the item if it is for the other one to get it.

Externalities have been heavily studied in economics, not just Game Theory, and the literature is exten-
sive and diverse. For our purposes, we will approach externalities in the context of the informal definition
we gave in the previous paragraphs.

2.2 Impact on Truthfulness

Under the scope of externalities, let us revisit the canonical example of a single-item auction. We know that
the second-price paradigm, in particular the Vickrey auction, which gives the item to the highest bidding
agent but collects as payment the second-highest bid, is optimal for social welfare while also being truthful:
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no agent has an incentive to lie about her true valuation (bid) no matter what the other players report
(i.e., in the language of Game Theory, truth-telling is a dominant strategy equilibrium). A magnificent and
elegant result, that allows us not only to maximize the “collective happiness” of the participants but also
ensure the integrity of the extracted information, here the agents’ bids. Furthermore, this is backed-up by
a very powerful notion of “stability” for our solution, that of dominant strategies implementation.

But if we consider spiteful behavior, this no more holds: the second highest bidder, who is going to lose
the item anyway, can harm the winning agent by declaring an (untruthful) higher bid which immediately
(“externally”) affects the payment of the other players, and in particular increases the payment for the
winning player. Is this desired? Is it expected? Can we model, study and prevent this phenomena? One
simple suggestion would be to “encode” such possible externalities-behavior into each player’s type (some
kind of “generalized” valuation) and then run the powerful VCG mechanisms (see Section 1.2.1) on the new
extended type-profile space of all agents to get out of the box again a socially efficient and dominant strategy
truthful mechanism. There is though a fundamental problem in this approach that conflicts all existing tools
in the area of Mechanism Desing: the players’ utilities now also depend on other agents’ payments1. To be
more precise, utilites are no more quasi-linear functions with respect to payments.

2.3 Challenges

Given the above discussion, now the challenges are:

• How to incorporate properly these externalities into the existing standard utility maximization frame-
work of Mechanism Design? We need a new model for the utility functions, taking into consideration
both the “core” utilities of each players, but also the “external” ones.

• Is the standard notion of truthfulness, and in particular that of implementation in dominant strategies,
computationally and descriptively appropriate to model this new complex framework of interactions?
Can we propose a new notion of “empowered” truthfulness?

• Utilizing stronger notions of truthfulness, can we design mechanisms that manage to somehow resist
against externalities which threaten the integrity of traditional truthfulness, the building block of the
entire area of Mechanism Design?

• Is there a general Mechanism Design paradigm that provides construction of such externality-resistant
mechanisms?

These are the main challenges and questions that motivated us throughout the current deliverable. In
the following Chapters 3 and 4 we try to make a step towards this direction.

1This is in fact a more “appropriate” definition, economics-wise, of externalities themselves: utilities are externaly affected
by payments to third parties, upon which we have no direct control.
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Chapter 3

Strong Truthfulness and Externality
Resistance

Under the scope of the introduction of the notion of externalities in Chapter 2 we now have to start dealing
with the challenges discussed in Section 2.3. First of all, under these new extremely complex underlying
interactions among players, we need to have a solid building-block, stronger than the traditional notion of
truthfulness which, as we already have seen even on the simplest example of single-item auctions, can make
the powerful VCG second-price auction fail dramatically. The intuition is that we would like to introduce
a more strict notion of truthfulness, where not only players have no reason to lie but they are going to be
punished for misreports. We want higher deviations from the true valuations to result in higher reductions
to the resulting utilities for the players who deviate:

3.1 The Notion of Strong Truthfulness

Definition 3.1.1 (Strong truthfulness). A mechanism is called c-strongly truthful, for some c ∈ R, if it
induces utilities ui such that

ui(vi,v−i)− ui(ṽi,v−i) ≥
1

2
c |ṽi − vi| , (3.1)

for every player i, valuations vi, ṽi and all valuation profiles of the other players v−i.

This notion of strong truthfulness is a generalization of the “standard” notion of truthfulness, simply by
setting c = 0.

Under these definitions we can now prove an elegant analytic characterization of strong truthfulness, in
the spirit of Theorem 1.1.3:

Theorem 3.1.2. A mechanism is c-strongly truthful if and only if the utility functions it induces for every
player are all c-strongly convex functions.

3.1.1 Strongly truthful auctions

Let us give an example of a strongly truthful auction in the simplest case of a single-buyer, single-item
auction. Assume a single player with a valuation for the item drawn from some bounded real interval [L,H].
We define the following mechanism, which we will call linear :

Definition 3.1.3 (Linear mechanism). The linear mechanism, denoted by LM, for the single buyer, single
item auction setting has allocation

a(v) =
v − L
H − L,

where the buyer’s valuation v for the item ranges over a fixed interval [L,H].
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It turns out that this elegant mechanism is in fact the strongest possible mechanism one could hope for
in this setting:

Theorem 3.1.4. The linear mechanism is 1
H−L -strongly truthful for the single buyer, single item auctions

setting and this is optimal1 among all mechanisms in this setting.

Notice that Theorem 3.1.4 holds only in the case where the valuations domain is a (real) interval T =
[H,L]. In case we want to deal with unbounded domains, e.g. T = R+, we need to define a more flexible
notion of relative strong truthfulness (see [6, Section 2.2])

3.2 External Utilities Model

In order to model externalities, both positive (altruism) and negative (spite), we are extending our agents’
types to include not only their valuations but also some parameters γ that try to quantify the interest/external-
effect each agent has upon others. Formally, for every agent i = 1, 2, . . . , n we redefine its type ti to be
ti = (vi,γi) where γi = (γi1, γi2, . . . , γin) with γij , j = 1, 2, . . . , n being the externality parameter of player i
with respect to player j. In fact, parameter γii is not needed and we can safely ignore it, setting γii = 0 for
all players i, but we still keep it into the formation of γi in order to have a vector-consistent notation. The
usage of these parameters will become apparent when we will define the utilities in our new externalities
model, but the intuition is that negative values of γij correspond to player i demonstrating spiteful behavior
towards player j, positive values correspond to altruistic behavior and a value of zero for this externality
parameter corresponds to lack of externalities towards player j (i.e. player i demonstrates “standard” game
theoretic selfish behavior).

Moving on to defining utilities, let M = (a,p) be a mechanism for our new externalities model. Our
players have true types ti = (vi,γi) and they submit to the mechanism bids (also called values) which
are (possibly mis-) reports of the valuation component vi of their true type ti. Given such a bid profile
b, mechanism M again computes the allocation a(b) = (a1(b), a2(b), . . . , an(b)), ai(b) ∈ [0, 1] being the
probability that agent i “receives service”2 and payment vector p(b) = (p1(b), p2(b), . . . ,pn(b)), where pi(b)
is the payment extracted from player i.

In this setting, we define player’s i base utility under mechanism M, given (true) type ti = (vi,γi) and
reported bid vector b to be the “standard”3 utility

ui(b|ti) = ui(b|vi) = ai(b) · vi − pi(b)

and then we define her externality-modified utility given also the other players’ (true) type profiles t−i to be

ûi(b|t) = ûi(b|v, ti) = ui(b|vi) +
∑

j 6=i
γijui(b|tj). (3.2)

From now on we will refer to this externality-modified utility simply as “utility”, since this is going to be
the utility notion in our new externalities-included model upon which we will also build our new notions
of “truthfulness” and “resistant” mechanisms. Some important observations on the above definitions are in
place:

• First notice that, as expected, the base utility ui(b|ti) only depends on player’s i type ti and not on
the other players’ types t−i and, in particular, it depends just on the valuation component vi of ti (i.e.
the externality parameters γi = (γi 1, γi 2, . . . , γi n) do not play any part in these base utilites). So, we
can also use the slightly lighter notation ui(b|vi) to denote the basic utility. Essentially, this is the
component of our new utility which corresponds exactly to the standard definition of utilities in the
traditional no-externalities setting of Mechanism Design (see Section 1.1).

1Formally, for every c-strongly truthful mechanism in this setting it must be that c ≤ 1
H−L

.
2In the single-item auction paradigm, this means agent i gets the item.
3Look introductory Section 1.1.
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• The externality-modified utility needs to depend on the entire (true) type profile t and not just i’s
component ti. That is, because the “externalities-induced” term of the definition (3.2) comprises of
a sum which ranges across all other players. Furthermore, unlike the base utilities, here we don’t
just need the valuations vi but all parameters γij for all j 6= i. However, from the parameters profile
vector t we only need the externalities parameters of player i so, again to make the notation more
straightforward, we can write ûi(b|v,γi) instead of ûi(b|t).

Naturally enough, if bi = vi we can denote the base utilities ui(b|ti) simply by ui(b) and if b = t we can use
just ûi(b) instead of ûi(b|t) for the externality-modified utilities.

3.3 Externality Resistant Mechanisms

Definition 3.3.1 (Externality-resistant VCG). The externality resistant-VCG mechanism for our mech-
anism design setting with externalities, denoted by rVCG(δ) and parametrized by some δ ∈ [0, 1] is the
following protocol:

• Ask all n players to report their bids bi, i = 1, 2, . . . , n.

• With a probability of δ
n for every player i, i = 1, 2, . . . , n, single-out player i and run the LM mechanism

(see Definition 3.1.3).

• With the complementary probability 1− δ run the “standard” VCG mechanism.

Theorem 3.3.2. Consider a mechanism design setting with externalities where players’ valuations are
drawn from the unit real interval, i.e. vi ∈ [0, 1] for all i = 1, 2, . . . ,m. Then, for every δ, ε > 0, if the the
externality parameters of our agents satisfy

max
i,j

γi j <
εδ

8(1− δ)2n3 ,

the externality-resistant VCG mechanism (see Definition 3.3.1) induces utilities such that

u
rVCG(δ)
i (b) ≥ (1− δ)uVCG

i (v)− ε

for every player i = 1, 2, . . . , n and all undominated strategy (bid) profile b of the players.

The intuition behind this result is that, by randomizing over components/mechanisms that are known
to work in simpler settings, the rVCG mechanism manages to achieve (base) utilities that are very close to
these of the corresponding VCG mechanism in the no-externalities setting (see Section 1.2.1). Of course,
this is not implementable in dominant strategies (we have seen that truthfulness under so strong solution
concepts are doomed to fail) but under a weaker solution concept, that of undominated strategies (see next
Section 3.4).

As an immediate result of this virtual “simulation” of an ideal behavior where only base utilities are
taken into consideration, rVCG manages to approximate both optimal social welfare as well as the revenue
of the traditional VCG (run on base utilities):

Theorem 3.3.3. In every outcome of rVCG(δ) implemented in undominated strategies, rVCG(δ)’s social
welfare is within an additive error of nη from the optimal social welfare and within an additive error of 2nη
of the revenue achieved by the standard VCG mechanism (run on base utilies without externalities), where
n is the number of players and η is a parameter with

η ≤ 4(1− δ)
δ

n2γ

(where γ = maxi,j γij).
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UaESMC Deliverable D3.2 Strongly Truthful and Composable Mechanism Design

3.4 Implementation in Undominated Strategies

Let us describe briefly the solution concept we use in our model and under which our notion of externality
resistance is realized, namely implementation in undominated strategies. Intuitively, we say that a given
property P (here, “externality resistance”) is implemented in undominated strategies if, for every agent i
there exists a set of strategies Di such that “playing within Di” is a kind of “dominant strategy” for every
player i, i.e. no matter what the other players’ strategies are, there is some strategy in Di that maximizes
player’s i utility. In addition, obviously P must be satisfied for all possible input strategies in the product
space

∏n
i=1Di. For a more formal description we refer to Section 1.4 of our paper [6] as well as [1] that

utilized this solution concept before. In our specific model the idea is that as long as the agents stay in
strategies which are close enough to truth-telling they are “safe”. Deviating out of the “balls” will be an
absurd choice, a dominated strategy.
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Chapter 4

Protocol Composability

In this chapter we explore the bigger image behind our proposed notion and constructions of the previous
Chapter 3. What is the grand underlying schema that achieves this resistance towards externalities while
still approximating the mechanism designer’s objective (e.g. social welfare, see Theorem 3.3.3)?

4.1 “Boosting” Truthfulness

By looking at Theorem 3.3.2 we see that the key property of rVCG (see Definition 3.3.1) is that the following
two values are approximately equal for all agents:

• The utility they end up with in the model with externalities after running rVCG

• The utility they would have ended up with in an ideal no-externalities model after running the “tra-
ditional” VCG mechanism.

In other words, while all agents still bid as to maximize their new, complex externality-modified utilities, they
end up with a base utility that is approximately what it would have been if all agents bid so as to maximize
their base utility. Thus, these externally-resistant mechanisms try to “simulate” the agents’ behavior in
an externalities-free “Utopia” and, as a result, they manage to approximate the optimal social welfare and
revenue.

But, above all, what these mechanisms achieve is to “boost” truthfulness by enforcing incentive-compatibility
in this challenging externalities-modified utility model. How is that achieved? The key design feature is that
of composability : If we look at rVCG (Definition 3.3.1) we will see that it randomizes over strongly-truthful
mechanisms. In particular, it uses the advantage of a strongly-truthful mechanism that punishes agents for
misbehaving in order to “forcefully” extract truthful reporting by the agents. It does so, by running with
some (small) probability such a punishing protocol on a random agent. With the remaining probability we
run a “standard” truthful mechanism that performs optimally with respect to base utilities. In other words,
we enrich mechanisms that perform well in the traditional externalities-free model by composing them with
“small”, powerful, strongly-truthful subroutines.

Such a composable design paradigm, where different mechanisms are combined to boost truthfulness
has been used before in mechanism design settings, e.g. utilizing differential privacy [11] and more subtly
in the scoring rules [3, 2] and responsive lotteries [5]. However, in our current paper we are making a
first step towards the systematic study of this scheme and the quantification of the performance of the
composable mechanisms. Also, this is the first time when this design is used to achieve externality resistant.
Furthermore, our constraction has the advantage that it is readily applicable to multi-dimensional mechanism
design settings, such us multi-item auctions and scheduling jobs to machines, which is the subject matter
of the next section.
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UaESMC Deliverable D3.2 Strongly Truthful and Composable Mechanism Design

4.2 Extensions and Multi-dimensional Domains

The externality-resistant mechanism rVCG, presented in Section 3.3, applied in a simple, single-dimensional
auction setting with only a single item for sale. Can we extend this powerful externality-resistant idea and
the composable scheme that we described in Section 4.1 to incorporate more involved multi-dimensional
settings with many items, or the scheduling problem?

It turns out that our construction is generic enough to do that in a very similar, straightforward way.
Consider for example the mechanism design Scheduling problem of minimizing the makespan of unrelated
machines (see Section 1.2.2). We show how to take advantage of strongly truthful mechanisms to give an
“unexpected” solution to this problem. We will give a mechanism for the problem under the following
assumptions:

• The execution times are bounded; in particular we assume that ti,j ∈ [L,H].

• As in the classical version of the problem, each task must be executed at least once but in our version
it may be executed more than once, even by the same machine 1. When a machine executes the same
task many times, we assume that it pays the same cost tij for every execution.

• The solution concept for truthfulness of our mechanism is not dominant strategies but undominated
strategies (see 3.4).

The mechanism is defined by two parameters δ ∈ [0, 1] and r:

• The players declare their values t̃ij , perhaps different than the real values tij .

• With probability 1− δ, using the declared values assign the tasks optimally to the players2.

• With the remaining probability δ, for every player i and every task, run “truth extracting” LM
mechanism (see Definition 3.1.3), like in the case of the externality resistant VCG (Definition 3.3.1)
r times using the declared values t̃ij from the first step. (In fact, we need only to simulate LM once,
pretending that the execution time of every task has been scaled up by a factor of r.)

We will show that

Theorem 4.2.1. For every δ > 0 and ε > 0, we can choose the parameter r so that with probability 1 − δ
the mechanism has approximation ratio 1 + ε and makes no payments; the result holds as long as the players
do not play a dominated strategy. This, for example, is achieved for every

r ≥ 8n2m
H2

L2

1

δ · ε2 .

Proof. The main idea is that if a machine lies even for one task by more than ε0 = L
2nε, the expected

cost of the lie in the truth extraction part of the mechanism will exceed any possible gain; therefore, the
truth-telling strategy dominates any strategy that lies by more than ε0.

We now proceed with the calculations: If a machine lies about one of its tasks by at least an additive

term ε0, it will pay an expected cost of at least rδ 12
ε20

H−L . The maximum gain from such a lie is to decrease
(with probability 1− δ) its load from mH (the maximum possible makespan) to 0. So the expected gain is

at most (1− δ)mH ≤ mH, while the loss is at least rδ 12
ε20

H−L . If we select the parameters so that

rδ
1

2

ε20
H − L ≥ mH, (4.1)

1The proofs of Nisan and Ronen that give lower bound of 2 and upper bound of n for the approximation ratio can be easily
extended to this variant of the scheduling problem. The same holds for the lower bound of truthful-in-expectation mechanisms.

2Finding or even approximating the optimal allocation with a factor of 1.5 is an NP-hard problem, but this is not a concern
here since we focus on the game-theoretic difficulties of the problem. One could replace this part with an approximation
algorithm to obtain a polynomial-time approximation mechanism.
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no machine will have an incentive to lie by more than ε0, i.e., |t̃i,j − ti,j | ≤ ε0. But then the makespan
computed by the mechanism cannot be more than mε0 longer the optimal makespan: Makespan(t̃) ≤
Makespan(t) +mε0. We can use the trivial lower bound Makespan(t) ≥ mL/n (or equivalently
nMakespan(t)/(mL) ≥ 1) to bound the makespan of t̃:

Makespan(t̃) ≤ Makespan(t) +mε0

≤ Makespan(t) +mε0
nMakespan(t)

mL

=
(

1 +
nε0
L

)
Makespan(t)

= (1 + ε) Makespan(t),

where ε = nε0
L . We can make the value of ε as close to 0 as we want by choosing an appropriately high value

for r; Constraint (4.1) shows that r = Θ(δε−2) is enough. Therefore, with probability 1− δ, the makespan
of the declared values is (1 + ε)-approximate, for every fixed ε > 1.
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Appendix A

Approaching Utopia: Strong Truthfulness
and Externality-Resistant Mechanisms

The paper “Approaching Utopia: Strong Truthfulness and Externality-Resistant Mechanisms” [6] fol-
lows.
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Approaching Utopia: Strong Truthfulness and
Externality-Resistant Mechanisms

Amos Fiat∗ Anna R. Karlin† Elias Koutsoupias‡ Angelina Vidali§

August 21, 2012

“And verily it is naturally given to all men to esteem their own inventions best.”
— Sir Thomas More, in Utopia, Book 1, 1516 AD.

Abstract

We introduce and study strongly truthful mechanisms and their applications. We use
strongly truthful mechanisms as a tool for implementation in undominated strategies for sev-
eral problems, including the design of externality resistant auctions and a variant of multi-
dimensional scheduling.

1 Introduction

1.1 Externalities

Mechanisms with externalities, and specifically altruism and spite, but also others (“the joy of
winning”, “malice”), have been studied at length in the literature. Experiments seem to indicate
that both altruism and spite have an observable effect, and various theoretical models have been
proposed to deal with this issue.

We quote higher authority (Cooper and Fang [15]) in the context of 2nd price auctions:
“We found that small and medium overbids are more likely to occur when bidders perceive their
rivals to have similar values, supporting a modified ‘joy of winning’ hypothesis but large overbids
are more likely to occur when bidders believe their opponents to have much higher values, consistent
with the ‘spite’ hypothesis.”

A partial list of (experimental and theoretical) references dealing with externalities is [19, 21, 22,
18, 8, 24, 25, 4, 30, 8, 23, 15, 13, 12, 10, 11]. The questions addressed in previous work primarily deal
with the impact of externalities on the equilibria, e.g., observing that externalities such as “the joy or
winning” or “spite” lead to overbidding in some auction mechanisms, or that externalities modeled
as altruism lead to more-or-less balanced outcomes in the ultimatum game, although neither of
these phenomena would be considered “reasonable” if one assumes no externalities. In recent years,
the price of anarchy as impacted by such externalities has also been the subject of much research,
e.g., malice in congestion games [25, 4, 30].

In this paper we consider a somewhat different goal: we seek to devise mechanisms that overcome
externalities. As a basic motivating example consider an auction selling a single item. The Vickrey
second-price auction is dominant strategy incentive compatible. But, try to imagine that the bidders

∗Tel Aviv University. fiat@tau.ac.il
†University of Washington. karlin@cs.washington.edu
‡University of Athens. elias@di.uoa.gr
§University of Vienna. angvid@gmail.com
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who lose are spiteful towards the winner (although this is really hard to believe). They may have
reason to increase their bid so as to increase the payment by the winning agent.

Even more worrisome — say that the only spiteful losers are those who took part in the various
experimental psychology studies cited above, and they did so only so as to mislead the researchers.
In fact, we who reside in Utopia will never, ever, encounter spite. This is a fact, but it does not
imply that everyone believes that it is so, it does not imply that everyone believes that everyone
believes that it is so, it does not imply that this is common knowledge. Ergo, just the concept
of spite (transmitted via the apple from the Garden of Eden), even if in fact there are no spiteful
bidders, implies that bidders may have an incentive not to bid truthfully in the VCG mechanism.

So, why not define the agent type to include all possible externalities and then run VCG? There
are two problems here: (1) It is impossible; payments to one agent impact the utility of another, we
are no longer in the quasi-linear setting, (2) Ignoring the former concern (i.e., impossibility), what
social welfare are we optimizing? Is it our goal to pander to the spiteful masses? Offer them bread
and circuses? Execute the winners during the lunch break of the Gladiatorial games? There are
indications from the lives of the Caesars that this may actually maximize (spiteful) social welfare.

So, the very existence of the concept of spite seems to threaten the fundamentals of mechanism
design.

To address these issues, we study an alternative utility model: We assume that agents have two
utility functions, a base utility, and an externality-modified utility which is a linear combination of
other agent utilities. Variants of this model appear in Ledlard [21], Levine [22], Chen and Kempe
[13, 12, 10], and many other papers. The PhD thesis of Chen [10] includes numerous relevant papers.

1.2 Externality Resistant Mechanisms

We present a new type of private value mechanism, rVCG. Assume that it is common knowledge
that no one is willing to lose more than (say) γ = 5 cents so as to increase another’s payment by
$1. Now:

1. Agents using the rVCG mechanism are sure that the following two values are approximately
equal:

• The utility they obtain under rVCG, in an imperfect world, where externalities are real,
and demons roam the earth.

• The utility they would have obtained under VCG, in an imaginary, Utopian world, where
externalities did not exist. (See Theorem 3.1).

I.e., given a bound, γ, on the altruism/spite, the rVCG mechanism approximates Utopia, as
promised in the title.1

2. On the other hand, irrespective of how infinitesimally small γ > 0 may be, a losing bidder in
a second-price auction, may, out of spite, even infintesimally small spite, reduce the winner’s
profit to zero. (This holds in the more general VCG mechanism as well).

1.3 Strongly Truthful Mechanisms

To achieve externality resistant mechanisms we make use of strongly truthful mechanisms. These
are mechanisms where it is not only a weakly dominant strategy to be truthful but where one
gets punished for lying. The goal in the design of strongly truthful mechanisms is to increase

1Admittedly, the bound γ has to be very small in order to truly approximate Utopia.
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the punishment as much as possible. Strongly truthful mechanisms are related to strongly convex
mechanisms, analogous to the connection between truthful mechanisms and convex utility functions,
(see, e.g., Archer and Kleinberg, [2, 1]).

For bounded domains, we give (optimal) strongly truthful mechanisms, in this case, the punish-
ment for the lie ṽ = v + δ is O(δ2).

For unbounded domains, we give a mechanism that is relatively strongly truthful where the lie
is measured as a fraction of the truth, and the punishment for the lie ṽ = (1+α)v, where α ∈ Θ(1),
is v/ log1+ǫ v.

Strongly truthful mechanisms can also be used in mechanisms for multi-dimensional problems
such as makespan minimization for unrelated machines, see below.

This idea of combining multiple mechanisms to boost truthfulness appears in [28], where it
is used to derive truthful mechanisms for some problems via differential privacy. It also appears
implicitly in the context of scoring rules [9, 6], and in the related responsive lotteries [16] so as to
determine the true utility of an outcome. However, we are unaware of previous attempts to quantify
the quality of such devices, nor are we aware of other attempts to apply them towards externality
resistance or for multidimensional problems.

In the appendix we describe transformations between strongly truthful mechanisms and proper
scoring rules. This automatically implies transformations between strongly truthful mechanisms,
market scoring rules, responsive lotteries, and market maker pricing algorithms to provide liquidity
for prediction markets [17, 31, 14].

1.4 The Solution Concept

Adapting a solution concept from Babaioff, Lavi and Pavlov, [5], from approximation problems to
arbitrary predicates, we say that a mechanism M is an algorithmic implementation of a predicate
P in undominated strategies, if, for all agents i, there exists a set of strategies, Di, such that

1. The output of M satisfies P , for any combination of strategies from
∏

j Dj , and,

2. For all i, for any agent i strategy, s /∈ Di, there exists some strategy s′ ∈ Di that is strictly
better for agent i than strategy s, irrespective of what strategies are chosen by the other
agents.

I.e., predicate P is implemented by a mechanism in undominated strategies, if, in the game
defined by the mechanism, and as long as no agent chooses a strategy that is obviously dominated
(for arbitrary assumptions about the types of other agents, e.g., values, bids, externalities), predicate
P holds for the outcome of the mechanism.

In the context of externality resistant auctions, as long as agents do not bid stupidly (do not
use a strategy that is obviously dominated), externality resistance holds.

In fact, any strategy that entails bidding “too far away” from the truth is dominated by bidding
truthfully, where “too far away” for agent i is a function of her own externalities γij (see Section 3
for a definition of these externalities). Moreover, agents can efficiently determine that bidding far
from the truth is dominated by truthful bidding. Thus, Di is contained in the set of all bids whose
distance from the truth is not too big. Note that we don’t make any claim on the precise strategies
that will be adapted by the agents.

1.5 Other Applications

We can also use strongly truthful mechanisms to achieve goals such as minimizing the makespan in a
multi dimensional machine scheduling problem, the infamous Nisan-Ronen problem, see [27, 20, 3].
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This magic is achieved by changing the problem, and allowing one to repeatedly assign the same
job to a machine. So, choosing to verify the truthfullness of the agent types can be done by choosing
at random, with some small probability, a target agent, and using strongly truthful mechanisms to
punish the agent for misrepresentation of his type.

Given a sufficiently large punishment, all agents will have incentive to stick close to the truth. So,
with high probability, the mechanism will achieve a close approximation to the minimum makespan
in undominated strategies..

This is quite general and can be used in other multi-dimensional settings where one can boost
truth extraction by repetition.

2 Strongly Truthful Mechanisms

A key ingredient in our constructions is the notion of a strongly truthful mechanism. In this section,
we define strongly truthful mechanisms for single dimensional problems and one agent. As discussed
below, these definitions and results extend to multi-dimensional and multi-agent settings.

Consider a single dimensional agent with private value (type) v for receiving a good or service.
A direct revelation mechanism takes as input some (possibly false) value, ṽ, computes a payment,
p(ṽ), and allocates the good to the agent with probability a(ṽ).

The standard quasilinear utility of an agent whose true value is v, but reports value ṽ (possibly
different from v), is denoted by

uv(ṽ) = v · a(ṽ)− p(ṽ). (1)

We also define
u(v) = uv(v),

i.e., the utility to the agent with value v when truthfully reporting ṽ = v.
In this setting, it follows from Myerson [26], that a mechanism is truthful in expectation if and

only if

• the allocation probability function a(v) is monotone nondecreasing, and

• the payment function is

p(v) = va(v) −
∫ v

0
a(x)dx+ p(0),

for some constant p(0). (We will take p(0) = 0 herein).

It follows from the above and from Equation 1 that

uv(ṽ) = v · a(ṽ)− ṽ · a(ṽ) +
∫ ṽ

0
a(x)dx

= (v − ṽ) · a(ṽ) +
∫ ṽ

0
a(x)dx.

Thus, for truthful in expectation mechanisms, it must be that

1. The utility function u(v) is convex (the integral of a nondecreasing function).

2. The allocation function a(v) = u′(v) (where u is differentiable).

3. Any convex function u(v) whose subgradient, u′(v), lies in the range [0, 1], can be interpreted
as the utility function for an associated truthful in expectation mechanism.
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4. Ergo, if restricting oneself to truthful in expectation mechanisms, one can describe a mech-
anism using utility functions or allocation functions interchangeably. (Up to additive con-
stants).

We seek to strengthen the notion of truthfulness in expectation so that the greater the deviation
from the truth, the greater the loss in utility.

To this end, we define c-strongly truthful mechanisms as follows:

Definition 2.1. A mechanism with utility function u is called c-strongly truthful if for every v and
ṽ:

uv(v) − uv(ṽ) ≥
1

2
c |ṽ − v|2. (2)

This definition enables us to extend the connection between truthfulness and convexity to
strongly truthful mechanisms. For this, recall the standard notion of strong convexity. For a
differentiable function f(x), convexity is equivalent to:

∀x, x′ f(x)− f(x′) ≥ f ′(x′) · (x− x′).

The following notion is also standard [7]:

Definition 2.2. Let m ≥ 0. A function f is called m-strongly convex if and only if for every x, x′:

f(x)− f(x′) ≥ f ′(x′) · (x− x′) +
1

2
m |x− x′|2 (3)

By defining strong truthfulness as in Equation (2) the following proposition holds:

Lemma 2.3. A mechanism with utility function u(v) is m-strongly truthful if and only if u(v) is
m-strongly convex.

Proof. Applying equation (1) to uv(ṽ) and uṽ(ṽ), we get

uṽ(ṽ)− uv(ṽ) = u′(ṽ) · (ṽ − v).

It follows that

uv(v) − uv(ṽ) = uv(v)− uṽ(ṽ) + u′(ṽ) · (ṽ − v) = u(v)− u(ṽ) + u′(ṽ) · (ṽ − v) (4)

Since by definition, the mechanism is m-strongly truthful if and only if uv(v)−uv(ṽ) ≥ 1
2m |ṽ−v|2, we

derive that the mechanism is m-strongly truthful if and only if u(v)−u(ṽ)+u′(ṽ)·(ṽ−v) ≥ 1
2m |ṽ−v|2,

which is precisely the definition that u(v) is m-strongly convex.

Remark: All of the definitions in this section extend naturally to multi-dimensional agents. Indeed,
the three equivalent definitions of a doubly differentiable function being convex (the standard one,
cycle monotonicity, and the Hessian being positive semidefinite) have analogues when discussing
truthful multidimensional mechanisms over convex domains [7, 29]. Similarly, the equivalent notions
of strong-convexity and strong truthfulness extend mutatis mutandis.

It follows from the above theorem that the question of finding the strongest truthful mechanism
is an extremal question about strongly convex functions whose partial derivatives satisfy appropriate
constraints that capture the constraints of the allocation probabilities (for example, for the single
item case the constraint is the derivative of the utility is in [0, 1]).
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2.1 Strongly Truthful Mechanisms for Single Agent, Single Item Auctions

Consider the case in which we want to find the strongest truthful mechanism for a single player and
one item. (We will use this in the next section.) To start, assume that the agent’s value is bounded:
v ∈ [L,H]. For this case, we define the linear mechanism:

Definition 2.4. The linear mechanism for the single player/single item setting has allocation rule
a(v) = (v − L)/(H − L), and applies when the player’s value is known to be in the range [L,H].

Theorem 2.5. The linear mechanism for a player whose value v satisfies v ∈ [L,H] is a 1/(H−L)-
strongly truthful mechanism. No other mechanism is m-strongly truthful for m ≥ 1/(H − L).

Proof. It is straightforward to check that for the linear mechanism, the utility function u(v) is
(v−L)2

2(H−L) . We can directly verify that Equation (3) in the definition of strong convexity holds with
equality for all v, with m = 1/(H − L). Indeed, we derive the following equivalences

u(z)− u(y) = u′(y) · (z − y) +
1

2
m |z − y|2

(z − L)2

2(H − L)
− (y − L)2

2(H − L)
=

y − L

H − L
(z − y) +

1

2

1

H − L
(z − y)2

(z − y)(z + y − 2L)

2(H − L)
=

(z − y)(2(y − L) + (z − y))

2(H − L)
;

the last equality clearly holds.
We now show that this is the strongest truthful mechanism. From the definition of strong

convexity for the extreme values of the domain, we get

u(H)− u(L) ≥ u′(L)(H − L) +
1

2
m(H − L)2

u(L)− u(H) ≥ u′(H)(L−H) +
1

2
m(L−H)2

Adding these two, we get that

(H − L)(u′(H)− u′(L)) ≥ m(H − L)2

Since u′(L), and u′(H) are in [0, 1] (they represent allocations), we get that m ≤ 1/(H − L).

Remarks:

• There is a direct connection between single-agent truthful mechanisms and scoring rules (see
e.g., [6]). Indeed, one can define a notion of strongly proper scoring rules that is analogous
to a strongly truthful mechanism. We note that the mechanism just described is in fact the
well-known quadratic scoring rule.

• Definition 2.4 and Theorem 2.5 can easily be generalized to the case of one player and many
items with additive valuations. In this case the utility is u(v) =

∑m
j=1

(vj−L)2

2(H−L) , for which
m = 1

n(H−L) .
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2.2 Relative strong truthfulness

If we want to consider unbounded domains, it follows from Theorem 2.5 that no m-strongly truthful
mechanism exists with m > 0.

For such domains, it may be useful to define a notion of relative strong truthfulness as follows:

Definition 2.6. We say a mechanism M is f(v, α)-relatively truthful if, for all ṽ such that ṽ 6∈
[v(1 − α), v(1 + α)]

uv(v)− uv(ṽ)

uv(v)
≥ f(v, α).

For example, it is easy to show that the single agent mechanism with allocation rule a(v) =

1− 1
ln v +

1
ln2 v

(and payment p(v) = v
ln2(v)

) satisfies f(v, α) = Ω( α2

log2 v
). Slightly better mechanisms

that approach f(v, α) = Ω( α2

log v ) exist2.

3 Externality Resistant Auctions

In this section, we consider how strongly truthful, or truth-extraction mechanisms can be used to
help cope with spiteful or altruistic bidders. Our goal is to ensure that a bidder participating in,
say, an auction for a single item, does not need to worry about her competitor purposely bidding
high just so as to make her pay a lot.

We consider the setting where an auctioneer wishes to maximize social welfare, and each agent
has a value vi for being one of the winners in the auction. Of course, in the standard version of this
setting, the mechanism of choice would be the VCG mechanism.

As we have already discussed however, the VCG mechanism is entirely vulnerable to spiteful
agents. Before explaining the alternative we propose, we define a utility model for externalities that
captures precisely what we mean when we speak about spiteful and altruistic agents.

In the externality-modified setting, agent i’s type ti consists of

• vi, her value for service; and

• a set of externality parameters γij for all j 6= i. Intuitively, γij represents how much agent
i cares about the utility of agent j. A large, negative value means that i is significantly
motivated by the desire to decrease agent j’s utility, whereas a large, positive value means
that i seeks to increase agent j’s utility. A value of zero means that i is indifferent towards j.

Let M be an arbitrary mechanism for the single-parameter allocation problem under considera-
tion. The mechanism takes as input a bid bi from each agent (which is equal to vi if the mechanism
is truthful) and produces as output an allocation x, where xi is the probability that agent i receives
service, and payments p, with pi the expected payment by agent i. Note that both xi = xi(b) and
pi = pi(b) are functions of the bids. The allocation selected must satisfy the feasibility constraints
of the setting, however, we do assume, that having only a single arbitrary agent receive service is
feasible.

2The following sequence of mechanisms are defined for every k > 1 and approach f(v, α) = Ω( α2

log v
):

p(v) =
v

lnk v
a(v) = 1− 1

(k − 1) lnk−1 v
+

1

lnk v

p(v) =
v

ln v lnk ln v
a(v) = 1− 1

(k − 1) ln v lnk−1 ln v
+

1

ln v lnk ln v

and so on.
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Given bids b−i of all players except player i, the base (standard) utility of agent i, when her
type is ti = (vi, {γi1, . . . , γin}) and her bid is bi, is denoted by uMvi (bi,b−i) and is defined as

uMvi (bi,b−i) = vi xi(b)− pi(b). (5)

Notice that this utility depends only on vi and not on the rest of agent i’s private information
(agent i’s externality parameters γij). This is why we subscript the utility by vi instead of ti.

We define the externality-modified utility ûMti of agent i when the types of the agents are t and
the bids are b as

ûMti (b, t−i) = uMvi (bi,b−i) +
∑

j 6=i

γij u
M
vj (bj,b−j). (6)

This model (and variants thereof) have been used previously in several papers, e.g. [22, 10].
Note that

• Because the externality-modified utility defined above depends, not only on the bids (or ac-
tions) of other agents, b−i, but also on their types, we add the t−i as an argument to the
utility function, which is atypical. (Of course the only part of t−i the utility depends on is
v−i.)

• The value of t−i is, in general, unknown to agent i, so agent i will be, in general, unable to
compute her externality modified utility ûMti (b, t−i).

• We will be particularly interested in cases where the mechanism M that is being run is VCG,
and then use uVCG

vi (b) to denote the standard utility of agent i when her value is vi, the
reported bids are b and the mechanism being run is VCG.

Our goal is to design a mechanism that is externality-resistant, in the following sense:

• The mechanism approximately maximizes social welfare.

• Despite the fact that each agent bids to maximize their externality-modified utility, each agent
ends up with a base utility that is approximately what it would have been had all agents bid
so as to maximize their base utility. Thus, non-spiteful agents are not harmed by the presence
of spiteful agents. Furthermore, the auctioneer’s revenue is not harmed by the presence of
altruistic agents.

An immediate difficulty that arises is the fact that our utility model is non-quasi linear. Our ap-
proach is to consider a weaker solution concept, implementation in undominated strategies, formally
defined as follows.

In a game of incomplete information, a strategy for an agent is a function mapping types to
actions. We say that a strategy s′i for agent i is dominated by strategy si if for all types ti for agent
i, and for all possible types t−i and all possible actions

b−i = s−i(t−i)

of the other agents, the utility of agent i satisfies:

uti(si(ti), b−i, t−i) ≥ uti(s
′
i(ti), b−i, t−i).

A strategy si for agent i is undominated if it is not dominated.
We say that a mechanism implements a predicate P in undominated strategies, if whenever

agents are limited to playing undominated strategies, it must be that predicate P holds.
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We consider the following simple variant of VCG, which we call externality-resistant VCG or
rVCG , for short. The rVCG mechanism, with n agents participating, is parameterized by a value
δ, 0 ≤ δ ≤ 1, and works as follows:

• Ask the n agents for their values/bids.

• With probability δ/n single out the i-th agent and run the truth extraction mechanism (de-
noted by TE) on him.

• With probability 1− δ, run VCG.

Our main theorem is the following:

Theorem 3.1. Consider any single-parameter allocation setting in which the n agents true values
vi are all in the range [0, 1]. Let γ denote maxij γij . Then, for any n, δ, ǫ, and γij such that

γ <
ǫ δ

8 (1− δ)2 n3
,

mechanism rVCG above implements the following predicate in undominated strategies:
For all agents i, and for all types t, the base utility obtained under the rVCG mechanism is

close to the base utility obtained by agent i when all agents bid truthfully under the “standard” VCG
mechanism. Specifically, for b undominated,

urVCG
vi (b) ≥ (1− δ)uVCG

vi (v) − ǫ.

In the proof below, we use the following notation and definitions:

• For any set of bids b, let MSW(b) denote the maximum social welfare achievable with respect
to the bids b, i.e.

MSW(b) = max
a

∑

j

bj(a).

• We define MSWvi(bi,b−i) to be the maximum social welfare experienced by agent i, when
agent i bids bi, whereas her true value is vi, and all other agents bid b−i. Thus,

MSWvi(bi,b−i) = vi(a
∗) +

∑

j 6=i

bj(a
∗), where a∗ = argmaxa

∑

j

bj(a).

• When agent i bids bi, her true value is vi, all agents but i bid b−i, then, the utility of agent i
under VCG with Clarke Pivot Payments is

uVCG
vi (b) = MSWvi(bi,b−i)−MSW(b−i).

We can now turn to the proof of the theorem.

Proof. We assume that agents would like to maximize their externality-modified utility:

ûrVCG
ti (b, t−i) = (1− δ)ûVCG

ti (b, t−i) +
δ

n


uTE

vi (bi) +
∑

j 6=i

γiju
TE
vj (bj)


 , (7)

9



where
ûVCG
ti (b, t−i) = uVCG

vi (b) +
∑

j 6=i

γij

(
uVCG
vj (b)

)
. (8)

We say an agent is standard if γij = 0 for all j. Such an agent doesn’t care about the utility
of others. For standard agents, the base utility and the externality-modified utility are the same.
In addition, because VCG is dominant strategy truthful, it is a dominant strategy for the standard
agents to bid truthfully.

So, we only need to understand how non-standard agents will bid. To this end, fix an agent i of
type ti and the bids b−i and types t−i of the other agents.

Suppose that the VCG part of rVCG is executed. Then agent i’s externality-modified utility
ûVCG
ti (bi,b−i, t−i) is defined by equation (8). We have

uVCG
vj (b) = MSWvj (bj,b−j)−MSW(b−j)

and
uVCG
vj (bj , vi,b−ij) = MSWvj (bj , vi,b−ij)−MSW(vi,b−i,j).

Thus, the difference between agent i’s externality modified utility when agent i bids bi and when
agent i bids vi is given by

ûVCG
ti (bi,b−i, t−i)− ûVCG

ti (vi,b−i, t−i) = MSWvi(bi,b−i)−MSW(vi,b−i)

+
∑

j 6=i

γij
(
MSWvj (bj ,b−j)−MSWvj (bj , vi,b−ij)

)

+
∑

j 6=i

γij (MSW(vi,b−i,j)−MSW(bi,b−i,j))

≤ 2
∑

j 6=i

γijηi

≤ 2(n − 1)γiηi, (9)

where |bi − vi| = ηi and γi = maxj γij .
On the other hand,

ûTE
vi (vi)− ûTE

vi (bi) ≥
1

2
m(bi)|bi − vi|2 ≥

1

2
η2i , (10)

assuming valuations in the range [0, 1] and the use of the linear TE algorithm. Combining inequal-
ities (9) and (10), we have

ûrVCG
ti (bi,b−i)− ûrVCG

ti (vi,b−i) ≤ (1− δ)2(n − 1)γηi −
δ

2n
η2i .

Consider any bid bi for which ηi = |bi − vi| has

(1− δ)2(n − 1)γηi −
δ

2n
η2i < 0.

Then the strategy of bidding truthfully dominates the strategy of bidding this bi. Thus, for all
undominated strategies, it must be that agent i bids a value bi which satisfies:

0 ≤ ûrVCG
ti (bi,b−i, t−i)− ûrVCG

ti (vi,b−i, t−i),
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implying that she will choose ηi so that

0 ≤ (1− δ)2(n − 1)γηi −
δ

2n
η2i ,

and thus
ηi ≤

4(1 − δ)

δ
n2γ. (11)

In other words, lying about vi by more than the right-hand side of Equation (11) is a strategy
dominated by the truth-telling strategy.

From this we can conclude that for any player ℓ who participates in rVCG, if all agents play
undominated strategies, then:

urVCG
vℓ

(bℓ,b−ℓ) = (1− δ)uVCG
vℓ

(bℓ,b−ℓ) +
δ

n
uTE
vℓ

(bℓ)

= (1− δ)
(
uVCG
vℓ

(vℓ,v−ℓ)−
(
uVCG
vℓ

(vℓ,v−ℓ)− uVCG
vℓ

(bℓ,b−ℓ)
))

+
δ

n
uTE
vℓ

(bℓ)

≥ (1− δ)
(
uVCG
vℓ

(vℓ,v−ℓ)− 2nη
)

≥ (1− δ)uVCG
vℓ

(vℓ,v−ℓ)−
8(1 − δ)2

δ
n3γ (12)

where η = maxi ηi.

The following two corollaries are immediate:

Corollary 3.2. When rVCG is used and all players play undominated strategies, the social welfare
of the outcome a∗ selected satisfies

∑

i

vi(a
∗) ≥ MSW(v) − nη.

Corollary 3.3. When rVCG is used and all players play undominated strategies, the profit of the
auctioneer is at least his profit from running VCG with truthful players minus 2nη.

4 Discussion

In this paper, we have introduced a number of concepts and taken first steps towards understanding
and applying these concepts. Clearly though, we have only scratched the surface.

For example, the basic tool of strongly truthful mechanisms may have some potential, but
there is clearly much left to be understood. What is the right way to define strong truthfulness?
What mechanisms achieve optimal relative strong truthfulness? What is the tradeoff between the
“strength” of the truthfulness and the social welfare that can be achieved?

We explored a new utility model for externalities in the context of mechanism design and
sought to design mechanisms that protect agents from these externalities. Our mechanism has
some externality-resistance, however, the externality parameters have to be extremely small in or-
der for our mechanism to be effective. Is it possible to do better? More concretely, our mechanism
tolerates externality parameters of value γ = O(1/n3). Are there mechanisms that tolerate higher
values of γ? In the opposite direction, can we show a bound on the maximum γ?

11



What happens if we use a different solution concept? Also, while we chose to optimize for “base
utility”, that is not the only goal one might consider. One could optimize for social welfare with
respect to the externality modified utilities. To what extent is this possible? Is this a reasonable
goal? I.e., should the goal of the mechanism be to encourage spite?
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A Strong Truthfulness and Scoring Rules

In this appendix, we develop the connection between strongly truthful single-agent mechanisms and
“strongly proper” scoring rules [9, 6]. As mentioned above, this immediately relates strongly truthful
mechanisms to a host of seemingly unrelated problems.

A.1 The setting

We consider the following setting:

• There is a set of n+ 1 events, (call them events 0 through n) one of which will happen.

• The agent (forecaster) has a belief vector p as to which event will happen, where pi is the
probability that event i happens. p0 = 1−∑1≤i≤n pi.

• The mechanism takes as input a postulated belief vector p̃, and uses a scoring rule to determine
the “payments” or “scores”. Specifically, the scoring rule says for each outcome i, the “payment”
or “score” the agent gets is si(p̃).

• The agent proposes p̃ and obtains utility
∑

0≤i≤n

pisi(p̃).

• The scoring rule is strictly proper if reporting p̃ = p strictly maximizes his utility.

A.2 Translating Mechanisms to Scoring Rules

Let M be a mechanism that takes as input an agent’s valuations x1, . . . , xn for n alternatives. We
assume xi ≥ 0 for all i and that

∑
i xi ≤ 1. The mechanism has allocation probabilities ai(x) and

a payment rule P (x).
We convert this to a scoring rule S(M) as follows: Given vector p representing the probabilities

p1, . . . , pn of outcomes (with p0 = 1−∑i pi), let si(p) = ai(p)− P (p), and let s0(p) = −P (p).

Proposition 1. If M is strictly truthful (i.e., it is strictly optimal to be truthful), then S(M) is
strictly proper.

Proof. By definition, the payoff to the agent when using the scoring rule and reporting p̃ is

∑

1≤i≤n

pisi(p̃) +


1−

∑

1≤i≤n

pi


 s0(p̃)

This is the same as

∑

1≤i≤n

pi (ai(p̃)− P (p̃))−


1−

∑

1≤i≤n

pi


P (p̃) =

∑

i

piai(p̃)− P (p̃).

and thus the incentives for the scoring rule are identical to the incentives for the mechanism.

14



A.3 Translating Scoring Rules to Mechanisms

Let S be a non-trivial scoring rule. We assume that the si’s are of bounded absolute value. We
show how to convert this to a mechanism:

Define the constants C0 and C as follows:

C0 = max
p

|si(p)− s0(p)|

and
C = max

p

∑

1≤i≤n

(si(p)− s0(p) + C0) .

Since the scoring rule is non-trivial, the payments (scores) are not constant and therefore C > 0.
Notice that si(p)− s0(p) + C0 ≥ 0 and that

∑

i≤i≤n

(
si(p)− s0(p) + C0

C

)
≤ 1.

The mechanism M(S) is now defined as follows.

• The mechanism takes as input the values xi for each of the alternatives 1 ≤ i ≤ n. We assume
that xi ≥ 0 for all i and that

∑
1≤i≤n xi ≤ 1.

• Define ai(x) = (si(x)− s0(x) + C0) /C. As observed above,
∑

i ai(x) ≤ 1 and ai(x) ≥ 0.

• Define P (x) = − (s0(x) + (1−∑i xi)C0) /C

Proposition 2. If S is strictly proper, then M(S) is strictly truthful.

Proof. The utility of a player playing this mechanism and reporting x is
(∑

i

xiai(x)

)
− P (x).

This is the same as
∑

i

xi
(si(x)− s0(x) + C0)

C
+

(s0(x) + (1−∑i xi)C0)

C
,

which is

∑

i

xi
(si(x) + C0)

C
+

(
1−

∑

i

xi

)
(s0(x) + C0)

C
.

If S is strictly proper then, it is strictly proper under the translation by C0 and scaling by C.
Thus the utility of the player in the mechanism is strictly maximized by reporting truthfully.
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A.4 Strong truthfulness

Let us define m(x)-strongly proper scoring rules as follows:

Definition A.1. A scoring rule with scores si(p) is m(p)-strongly proper if for every p, p̃

u(p,p) − u(p, p̃) ≥ 1

2
m(p̃) ||p− p̃||2,

where
u(p, p̃) =

∑

i

pisi(p̃).

Theorem A.2. • Let M be an m(x)-strongly truthful mechanism. Then S(M) is an m(x)-
strongly proper scoring rule.

• Let S be an m(p)-strongly proper mechanism. Then M(S) is an m(x)/C strongly truthful
mechanism.

Proof. The first part is immediate from the fact that utilities are precisely preserved under the
transformation from mechanisms to scoring rules. For the second part, suppose that for scoring rule
S

uS(p,p)− uS(p, p̃) ≥ 1

2
m(p̃) ||p− p̃||2,

Then by the construction above

uM(S)(x,x) − uM(S)(x, x̃) =
uS(x,x) − uS(x, x̃)

C
≥ 1

2

m(x̃)

C
||x− x̃||2.

A.5 Application to some standard scoring rules

• Logarithmic scoring rule: the translation doesn’t work because C0 is unbounded.

• Quadratic scoring rule: si(p) = 1 + 2pi − ||p||2. Then s1(p)− s0(p) = 2(p− (1− p)) = 4p− 2
which is between -2 and 2. Thus C0 = 2 and C = 4. This translates into a(x) = x, which has
m(x) = 1.

• Spherical scoring rule: si(p) = pi/||p||. Then s1(p)− s0(p) = (2p − 1)/
√

p2 + (1− p)2 which
is between -1 and 1. Thus C0 = 1 and C = 2. This translates into

a(x) =
1

2
+

2x− 1

2
√

x2 + (1− x)2
.

The m(x) value is half that of the spherical rule.
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