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Executive Summary:
Scientific Progress Analysis and Recommendations

This document summarizes deliverable D5.2.1 of project FP7-284731 (UaESMC), a Specific Targeted Re-
search Project supported by the 7th Framework Programme of the EC within the FET-Open (Future and
Emerging Technologies) scheme. Full information on this project, including the contents of this deliverable,
is available online at http://www.usable-security.eu.

The work in UaESMC project is guided by a set of example problems that have been extracted from the
interviews with end users conducted in Task 1.2, as well as from the experience of the project participants.
In this report, we describe these problems. The first of them is the privacy-preserving statistical analysis of
structured data, belonging to several different data owners and being split between them both horizontally
and vertically. In real-world tasks, the quality of analysed data is not perfect and the methods must be able
to cope with missing values, obviously wrong values, etc. The analysis suite must be sufficiently general to
handle these issues, while at the same time providing a rich set of data analysis tools.

The second set of problems concerns privacy-preserving optimization. We have selected linear program-
ming as the centre of our focus. Here the existing approaches have been twofold — either implement an
algorithm for linear programming in some SMC framework, or scramble the problem in some manner, such
that from the solution to the scrambled problem it is easy to deduce the solution to the original problem.
The first approach is slow and the second has so far lacked a satisfactory security analysis. In UaESMC, we
would like to obtain the benefits of both approaches. Besides linear programming, we also consider other op-
timization tasks, including NP-hard problems and privacy-preserving (heuristic) methods for solving them.

The third set of problems stems from KTH’s work and concerns the privacy-preserving operation and
management of networks. Again, there are several subproblems, e.g. shortest paths between nodes, simu-
lation of attacks, management of reputations, etc., which have to be solved in privacy-preserving manner.
The last set of problems concerns the interplay between game theory and cryptography (but note that there
are significant mechanism design questions also in other sets), where the non-repudiation property may
contribute to new ways of designing mechanisms.

Through the selection and refinement of these problems, we have reached Milestone 1 of the project.
In the first year, we have made progress in all areas listed above. We have used the Sharemind SMC

framework to implement and optimize various tools for data analysis. We have proposed a transformation
for linear programs, where the preservation of privacy follows from concrete hardness assumptions. We have
studied the use of privacy-preserving genetic algorithms for various optimization tasks, as well as privacy-
preserving graph algorithms, usable for network management. We have proposed composable notions of
truthfulness in games and shown how to obtain them.

In the second year, our work plans are centered on the same problem areas. Additionally, we will consider
how our results will come together, forming the UaESMC framework. This report details those plans.
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Chapter 1

Introduction

The goal of UaESMC is to increase the use of secure multiparty computation (SMC) techniques both in
numbers and in variety. The project works toward this goal by looking for real-life problems that could
most benefit from SMC techniques, by determining the reasons why these techniques are not used, by
proposing solutions that overcome these reasons, and by demostrating the usefulness of these solutions.
This workplan requires tight coordination between the partners to make sure that the project is on track
and the research directions of the partners are well-aligned.

One of the most significant steps during the first year of the project has been the conducting of inter-
views with the representatives of various fields of activity. The interviews, reported and analysed in Deliver-
able 1.2 [11], were held with the aim to identify multi-party computational problems relevant to these fields,
where the security requirements of the data owners are currently hindering the actual computation, and
where a solution to satisfying these requirements and allowing the computations to take place would benefit
the parties. The interviews showed certain problems common to a number of fields. The project consortium
has extracted and refined these problems from the interviews. The problems are reported in Chapter 2 of
this deliverable. The extraction of common problems marked that milestone MS1 of the project had been
reached. The problems have been further refined and extended in Deliverable 4.1 [9]. The extension of the
problems and their embodyment in application scenarios has identified further privacy-preserving tasks to
look at.

The interviews showed that in computationally similar problems, the providers of inputs and receivers of
outputs may be partitioned quite differently leading to different requirements to protect certain data from
certain parties. Hence, When stating the common problems, the generality with respect to security and
privacy requirements was seen as important. This has lead to the following commonality in the problem
statements. Let y = f(x1, . . . , xn) be the function to be computed on inputs x1, . . . , xn. We assume that the
protocol set for SMC, run by the parties, is such that some kind of private storage is implemented. Values
held in this private storage can become public only if several of the computing parties cooperate. The
private storage may be implemented through secret sharing, or through threshold homomorphic encryption,
or through fully homomorphic encryption if none of the computing parties knows the decryption key. When
stating the problems of private computation, we will typically require that

• at the beginning of the computation, x1, . . . , xn are in the private storage;

• at the end of the computation, y will be added to the private storage;

• nothing about x1, . . . , xn (or about the intermediate values during the computation of f) will become
public.

After the computation, y may be made public, or public to some of the parties, or kept private and used as
input to some other computation. Private computation tasks implemented in such manner are universally
composable, meaning that the security of some composition of these tasks follows from the security of each
task separately. The use of universally composable building blocks makes the building of complex, but
secure functionalities conceptually easy.
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According to the description of work of UaESMC, further theoretical work in the project should cluster
around the selected problems. This has indeed taken place. Chapter 3 gives an overview of the tackled
theoretical problems; the achieved results are more thoroughly described in deliverables D2.2.1, D3.2 and
D4.1. In all presented protocols and techniques, one can see a strong drive towards composability. Chapter 3
also describes and analyses the achieved performance of the proposed protocols. The work on selected
problems will continue in the next year, the plans are described in Chapter 4. The inter-partner cooperation
has been greatly helped by the biweekly meetings over instant messaging, attended by all project partners.

5



Chapter 2

Selected Problems

2.1 Statistical Analysis of Structured Data

The analysis of sensitive data combined from several registries and databases held by different entities was
the task that came up most often in the interviews [11]. A typical sequence of steps in performing such an
analysis might be the following.

• Determining the customer of the study, the statistical questions to be answered, the data owners, the
available SMC infrastructure.

• Obtaining the data owners’ agreement to participate in the study.

• Uploading the data to the storage offered by the SMC infrastructure.

• Running the statistical analysis with the SMC techniques.

• Making the results of the analysis known to the customer of the study.

• Disposing the stored data.

Often, the interviewees did not have a clear idea of exactly which analyses they would run if such combination
were possible, as they had not thought about it yet. Hence the SMC problem we are going to select must
be sufficiently generic, in order to cover the actual problems we may consider in year two of the project.

A common issue with the usage of SMC for statistical analysis was reported to be the data analyst’s
desire to “see” the data; to get a feel of what it looks like before starting the actual analysis, in order to
have some ideas on which analyses and parameter selections make sense for this dataset. We have decided to
interpret this desire as the analyst’s wish to see some simple statistics of the dataset, e.g. means, medians,
standard deviations, histograms of single parameters. Having the data analyst “see” the data introduces
more steps to the analysis, which may make it more complicated. It also introduces new opportunities in
reusing the computations that have already been made.

2.1.1 Problem Description

In this problem, we are analysing data coming from several different sources, split both horizontally and
vertically. Our data model consists of several different tables. The tables have to be joined and the analysis
performed on the view obtained. The view maybe quite large. The quality of the data may be varying (e.g.
there may be missing values). Besides the columns present in one of the tables, there may also be derived
columns (sums, averages, normalized values, etc.).

On the joined view, various statistics mentioned above must be computed. Other operations of data
analysis to be implemented include
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• Detection of errors in the data. The list of detected errors must remain private, in order to be
composable with subsequent analysis.

• Various regressions and tests, including

– Linear and various kinds of non-linear regression;

– T-tests;

– Significance testing;

– Factor and cluster analysis.

The suite of statistical tests, including the necessary privacy for the result of each test will be specified in
deliverable D4.1.

The techniques we develop for privacy-preserving analysis of structured data should also use the structure
of data, as it is public. The structure may be used to pick a more efficient strategy for making the database
queries, for building the view and for performing the actual computations.

Depending on the application, there may be the issue of obtaining truthful data from data owners. We
need locate the incentives for inputting truthful data, and to devise sufficiently general mechanisms for
acting on these incentives.

2.1.2 Measuring the performance

In practice, we are interested in the size of database that can be statistically analyzed using secure multiparty
computation. Therefore, the main performance metric we are interested in, is the time that it takes to
securely process an input database of the given size.

To test the performance of a secure statistical algorithm, we set up an input database of the given size.
Note that to test simpler algorithms, we can replace the database with an input vector or table. We will
then run the algorithm with this input on a secure multiparty computation system.

Our statistical algorithms are implemented on the Sharemind platform. The performance measurement
tools and methodology for Sharemind algorithms and protocols have been described in Section 4.2 of [4].

2.1.3 Performance goals

The statistical processing algorithms that UaESMC is developing, are expected to operate with input
databases ranging from 100 to 100 000 values in practice. Therefore, we set the minimal goal to be to
process 100 000 values in reasonable time. The optimistic goal is to process databases of one million values.

More specifically, we want to be able to complete a statistical study on a 100 000-value database in a
day. We assume that in this setting, Sharemind is deployed in a near-optimal setting, with fast network
links. One day is a reasonable amount of time, as statistical studies typically set time aside for interpreting
the results.

Also, paying the price of running secure multiparty computation for one day is often better than not
being able to process the data at all.

2.2 (Integer) Linear Programming

A number of interviews mentioned optimization problems with sensitive inputs coming from different parties
as an SMC task. We anticipate that the exact nature of the optimization problems will vary widely among
different applications, hence we have selected a generic optimization problem as one of the example problems
of UaESMC.
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2.2.1 Problem Description

A linear programming task is of the form “minimize cT ·x subject to the constraints A ·x ≤ b, where A is a
m× n matrix (with integer or real entries), b is a vector of length m, c is a vector of length n, and x is the
vector of unknowns, also of length n. The goal is to pick the values for the elements of x = (x1, . . . , xn)T ,
such that the dot product of c and x is minimized, while all the constraints are satisfied. The values of the
variables are real numbers.

The task may have further constraints by requiring that the values of some of the variables xi are integers.

In the multiparty setting, we consider each party Pi to provide a matrix Ai, and vectors bi and ci.
The actual matrix A and the vectors b and c are the sums of the respective matrices and vectors of the
parties. This implies that the size of the problem (number of constraints and variables) is public. This
setting is very general and covers both the horizontal and vertical splitting of constraints. Because of this
flexibility and high privacy requirements, we expect any privacy-preserving solution to construct A, b and
c in a private domain and then apply a solution algorithm that does not leak data out of this domain. The
privacy-preserving linear programming problem in this setting has been considered before [1], but existing
algorithms are either slow or have unsatisfactory security analyses.

The sizes m and n of the task are public. Regarding the integrality constraints, we assume those to be
public as well.

We will also consider the case where each party wants to see a different objective function maximized,
and is prepared to provide incorrect data to the computation in order to achieve this. If payments are
possible between players then controlling the behaviour of players will be a classical task in mechanism
design.

2.2.2 Measuring the Performance

The sufficiency of the performance of an optimization task is dependent on the user. If the optimization
result must be delivered in real time, the secure algorithm must be very fast. If the search/optimization
task is set up for just a few uses, it may be acceptable if the task takes longer.

An example of a real-time search requirement would be shortest path routing (imagine navigation appli-
cations for cars or public transport routing systems). An example of a non-real-time application would be
a system that collects business transactions from several parties and uses them to search for certain rules
or patterns that could help the parties make decisions.

2.2.3 Performance Goals

Both of the prototype implementations in UaESMC are for tasks that could ideally be solved in a few seconds
to end users. However, given that both are complex tasks, we are reluctant to promise real-time results for
both. The current goal is to determine how big problems can we solve in one minute, five minutes, one hour,
and one day.

2.2.4 Shortest Paths in Graphs

We consider separately an optimization problem that may be the most prevalent among our interviewees,
as well as elsewhere in the society. Also, its structure may allow for more efficient solutions than what can
be obtained from its reduction to the linear programming problem. Finding shortest paths in graphs (either
with single source and target, or the all-pairs problem) is the optimization problem that we are going to
consider separately.

In this problem, we assume the graph to be public. Also, the vertices between which the shortest path
must be found, are public. The edge lengths, however, are private.

The privacy requirements of the task may be different in different settings. In one setting (see Sec. 2.3),
the computing parties are identified with the nodes of the graph. Each party knows the lengths of the edges
incident to it. As the result of the computation, each party should learn the next step that must be made

8



UaESMC Deliverable D5.2.1 Scientific Progress Analysis and Recommendations

from it towards the target node. Currently, we do not know any more efficient methods for this problem
than the generic ones.

2.3 Network Management

Privacy-preserving management / operation of a cluster of networks is in some sense an application for the
optimization algorithms that UaESMC will develop. On the other hand, it will present its unique challenges
due to the timing and connectivity constraints. This set of problems has been inspired by the work done by
KTH in this area.

Internet packets are delivered through a complex network of Internet Service Providers (ISPs). Each ISP
owns an Autonomous System (AS) that participates in the Border Gateway Protocol (BGP). The Border
Gateway Protocol is exploited to make inter-AS routing decisions, allowing each ISP to independently enforce
its own policy rules and to locally compute its preferred intra-AS routing strategy. Several scenarios can
benefit from more collaborative ASs.

2.3.1 Global minimal cost

ISPs are commercial entities that negotiate political agreements. Each ISP has its own cost for packets that
traverse its network and can be taken into account in the selection of routing strategies. An undirected
graph can be used to encode the inter-AS topology, in such a way that vertices correspond to the border
gateways of ASs and edges correspond to adjacent gateways (either intra- or inter-AS). Each edge is labeled
with the cost related to the traversing traffic.

The problem of computing the optimal routing is already solved in a world where each AS knows the
running cost of all edges of the graph. The real world is more complex and ASes have only a partial
knowledge of the costs:

• Vertices of the network are partitioned into ASes in order to represent multihomed domains.

• The cost of an edge connecting vertices belonging to the same AS can be computed by the ISP itself,
by running a local routing protocol. This cost is a commercial secret that the ISP does not want to
share with the competitors/customers.

• The cost of edges crossing AS boundaries are regulated by contracts. They are known by the ISPs
operating these two ASs, but cannot be discovered by the other ISPs.

The goal of each AS is to compute, for each destination vertex d and an internal source vertex s, the
vertex to which the packed has to be delivered in order to reach the best path and the corresponding total
cost. For making computations based on these distributions, all-to-all connectivity is available. This might
be used for setting up routing tables. When a particular packet is being handled, the routing decision must
be done using local information only.

Hence we have an instance of the all-pairs shortest path problem, with a particular structure of the
graph and the knowledge of its edge lengths.

2.3.2 QoS in multihomed gateways

The above scenario can also be used to represent QoS aware routing problem, where the costs represent
service metrics. However it is not sufficient to deploy a full QoS aware routing. In fact, the inter-AS routing
problem takes into account only the costs of delivering packets between border gateways, forcing AS to rely
on selfish routing techniques. The inter-AS best path is computed regardless of the intra-AS paths, then
each AS adopts its own strategy to route the packet inside its own network. This approach represents a
limitation to find a global optimal solution whenever multi-homed border gateways are involved, since the
computed paths represent only an optimum for outbound traffic. The uncoordinated routing decisions can
produce congestion on distant inter-domain links. Statically computing global routing paths is unfeasible
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due to the number of intra-nodes involved. Moreover, it is not possible to run a routing algorithm whenever
a packer is being handled.

To handle these problems a QoS model based on traffic class (TC) aggregates is usually involved. ASs
locally monitor service levels for each class. Whenever a service level violation or a significant quality metric
change occur, the ASs are allowed to exploit all-to-all connectivity to compute and update the routing path
of the specific traffic class.

2.3.3 BGP verification

The proper functioning of this infrastructure depends on the veracity of BGP routing information, forwarded
among ASes. Misconfiguration and attacks can be propagated, causing instability and severe faults (e.g. the
AS7007 incident [5]). In order to prevent these accidents, reputation networks that exploit the real-world
trust relationships among ISPs have been proposed [8]. While BGP allows to verify the information source
by using standard cryptographic techniques, it does not support the verification the truth of what ASs
actually say, forcing the ASs to blindly trust the received information. The reputation network can support
decisions in conflicting scenarios, since it is impossible to detect all BGP faults affecting a single AS locally
at that AS.

These reputation networks are usually built on top of e-voting protocols, enriching the existing solutions
to allow each participant to obtain a different election result. The essential properties of such systems are

(i) proved mechanism to discourage malicious behavior and encourage trust;

(ii) confidentiality of the votes and the business relations; and

(iii) proved security against malicious attackers.

The data to protect here are the reputation scores different nodes have for each other.

2.3.4 Monitoring and replaying attacks

A network attack often hits multiple ASs simultaneously. To recognize the attack while it is taking place,
or to analyse it afterwards, the network logs of multiple ASs have to be combined. A standard method for
replaying an attack is to build a network model, typically in the form of a Petri net, and to apply each
attack message to this model in the same order it occurred.

The replaying can take place in the private domain. This requires good methods for privacy-preserving
executions of control-intensive applications. Alternatively, the combined log of several ASs could be sorted,
made public and replayed in the public domain.

If the sorted log can be replayed in public, then the result of the private replay can probably also be
made public after each step. This will considerably simplify the private execution.

A separate issue in network log analysis is the distinguishing of the log items belonging to different
attacks going on at the same time. This can also be more precise if logs from several ASs can be used.

2.4 Cryptographic Support for Mechanism Design

Using SMC techniques to implement trusted mediators picking correlated equilibria has been exactly one
of the two major parts of the work that has been done so far in bringing together SMC and Game Theory.
This work has definitely been interesting, but even greater integration may be possible. In UaESMC, we
want to come up with mechanisms that force the players of a game to report their true valuations to the
mediator.

For a clearer exposition1 let’s assume we have a 2 × 2 (normal form) game, i.e. two players each one
having two available strategies. This bimatrix game can be represented by two 2 × 2 matrices, A = (aij)

1The discussion can be easily adapted to general n-players m-strategies games, n,m ≥ 2.
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and B = (bij). Player 1, also called the row player, assigns probabilities pi to rows i = 1, 2, p1 + p2 = 1
and player 2, called the column player, assigns probabilities qj to columns j = 1, 2, q1 + q2 = 1. An
outcome, also called strategy profile, of the game is just a tuple (p, q) of the players’ selected probability
distributions p = {pi}i=1,2 and q = {qj}j=1,2. At a given outcome (p, q), player 1 receives an (expected)
utility of

∑2
i=1

∑2
j=1 piqjaij and player 2 a utility of

∑2
i=1

∑2
j=1 piqjbij .

Now, on top of this traditional game setting, consider a mechanism design2 setting where the player’s
types are these matrices A and B and, given such (possibly mis-)reports Ã and B̃ of these matrices by the
players, a mechanism computes a Nash equilibrium (p, q) of the bimatrix game (Ã, B̃), the players receiving
valuations equal to their true utilities on the outcome (p, q) of the underlying game (A,B) and also the
mechanism may also give payments π1 and π2 back to the players for taking part at the mechanism. More
formally, given as input the bimatrix game G̃ = (Ã, B̃) the mechanism computes an allocation α(G̃) =
(α1(G̃), α2(G̃)) = (p, q), where p, q are probability distributions over support {1, 2} constituting a Nash
equilibrium of the game G̃, and payments π(G̃) = (π1(G̃), π2(G̃)) = (π1, π2) ∈ R. Then, the players end up
having utilities

u1(G̃|A) =

2∑
i=1

2∑
j=1

piqjaij + π1 and u1(G̃|B) =

2∑
i=1

2∑
j=1

piqjbij + π2

respectively and, since they are rational and selfish utility maximizers, they will (mis)report the Ã and
B̃ that maximize their own utilities. Note that, while players report the bimatrix game G̃ and the Nash
equilibrium is computed for this game, the valuations the players receive are given by their true utilities for
the initial game G = (A,B) and so they need to strategize and possibly lie in order to move the allocation
of the mechanism to a better outcome for game G which is private information for the players.

As an example, to make our model even clearer, consider the following well known “Battle of Sexes” game
and assume mechanisms with no payments. In this concise representation we have just merged matrices

Boy

opera football

Girl
opera 3, 2 1, 1

football 0, 0 2, 3

Table 2.1: Battle of Sexes

A = ( 3 1
0 2 ) and B = ( 2 1

0 3 ). So, let’s say that we have a mechanism that given this true input G = (A,B)
will compute the (pure) Nash equilibrium ((1, 0), (1, 0)) (see the bold top left corner of Table 2.1). At this
outcome, they both end up going to the opera, the girl receiving a “happiness” of 3 and the boy receiving
2. It is indeed a Nash equilibrium: no-one wants to unilaterally (i.e. given that the other will not deviate)
change her/his strategy. But, this outcome results to an imbalance at the players’ gained utilities: The girl
ends up with 3 and the boy with 2. So, the boy has an incentive to misreport B̃ = ( 0 1

0 3 ). The resulting
game G̃ = (A, B̃) would have only one Nash equilibrium, the (0, 1), (0, 1), so the mechanism will output this.
This outcome now, at the original game G results to a utility of 3 for the boy which is an improvement for
him.

The above exposition briefly describes in a way a rather general model of “Mechanism Design for playing
games”. In this mechanism design setting players’ strategies-types are games and the allocations are game
outcomes (in our case Nash equilibria, but we can easily use other solution concepts like e.g. correlated
equilibria). Under this model one can pose some initially interesting questions like:

• For mechanisms without money that compute Nash equilibria, like the one we presented above, is
there an interesting class of games G that induce truthfulness, i.e. the players don’t have an incentive
to misreport their utility matrices?

2For a quick and very basic introduction to Mechanism Design and Game Theory we refer to Deliverables D3.1 and D3.2.
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• Using payments, can we enforce truthfulness for any class of games G? Which are the mechanisms
that minimize the payments requirements for a given class of games?

• Suppose that the mechanism is a distributed algorithm: the initial states of the processors/players are
their values (utility matrix inputs), and the final state of every processor is one of its strategies. What
algorithms make sense and what games are “playable” by them? A variant of this case can be that
at every time step each processor has a strategy, and there are payoffs associated to every such time
step.

This “mechanisms for game-playing” setting and the questions raised are interesting also in SMC per-
spective: the players report their true values to a trusted third party (the mechanism) which then selects
an outcome for them and then the players have to comply with this. Can the notion of non-repudiation be
brought to this setting to ensure compliance? Shall they report truthfully to this authority? How much
do we have to pay them in order to ensure their “honest” participation? What are the most “efficient”
protocols we can use while preserving truthfulness? How can we do this in a distributed way? The study
of such problems would allow to leverage the core skills of UaESMC partners and explore the trade-offs of
several dimensions of complexity of privacy-preserving applications [2].

12



Chapter 3

Tasks Worked on During Year 1

3.1 Optimization

Linear programming is one of the most basic optimization tasks. For many other tasks, there is a straightfor-
ward reduction to linear programming or to integer linear programming. Also, the task of finding correlated
equilibria of a game reduces to linear programming. Hence, this task is of high interest to UaESMC.

There exists an implementation of the simplex algorithm that is composed from universally composable
elementary arithmetic and logic operations working on the private domain [1]; the domain is based on secret
sharing over finite fields. Due to the faithful implementation of a complex algorithm, the actual performance
of the protocol is not too great.

The linear programming problem has a lot of algebraic structure. Hence there have been many proposals
to base a secure linear programming protocol on the idea of problem transformation. Using this idea, the
original problem is scrambled in the private domain, and the resulting linear programming problem is made
public. The published problem is solved using conventional algorithms, and the result is again unscrambled
in the private domain, using the randomness generated during scrambling. Hopefully,

• scrambling-unscrambling in private domain requires significantly less resources than the simplex algo-
rithm,

• the public solving of the scrambled problem requires little resources, compared to private scrambling
and unscrambling,

• the scrambled problem hides the original problem well.

A simple example of problem transformation is the inversion of values. Let x ∈ Zq be a value stored
in the private domain. Let the supported arithmetic operations of the domain be the computation of
linear combinations of private values (with public coefficients), and the multiplication of two private values.
Suppose we want to compute x−1 ∈ Zq privately. We will then generate a private value r ∈ Z∗

q , compute
xr ∈ Zq and make it public. In public domain, we compute (xr)−1. Now we can compute x−1 = (xr)−1 · r
in private [3]. Similarly, one can compute inverses of private matrices.

A common way to transform a linear programming problem has the multiplication of its constraint
matrix by a random invertible matrix in the core of the method. A common shortcoming of all such
proposals for linear programming so far is their lack of proper security analysis (recognized in some of the
papers, ignored in others). Another common shortcoming of all such proposals is their complete failure to
specify the probability distributions of the random real numbers they use for hiding the original problem.

3.1.1 Linear programming through problem transformation

In deliverable D2.2.1 we describe our approach to privacy-preserving linear programming through program
transformation. In contrast to previous approaches, we have stated precise assumptions on the hardness of
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certain computational tasks, serving as the basis of the security proof of our technique. These assumptions
also allow us to characterize the loss of efficiency (the increase of the task) we must accept in order to get
a certain level of security.

For the optimization task to make sense in the context of linear programming, the values defining the
problem must be real numbers, not elements of finite fields. This significantly increases the novelty of our
hardness assumption, which is also stated over real numbers (although in other aspects, it is similar to
assumptions that have appeared in other papers). Hence the assumption should be subject of further study
in the coming years.

We have implemented our problem transformation mechanism, though not yet on an SMC platform.
Hence we cannot experimentally evaluate its performance yet. We could count the number of various
operations (on private values) it uses; the operations comprise random real number generation (according to
normal distribution), addition, multiplication, and square root computation. We can see that our proposed
transformation is not much more expensive than existing approaches. We will not estimate the running times
of our transformation on Sharemind — although the methodology and performance models are available [4],
there are too many operations that have not been considered in these models and would significantly affect
the performance. Instead, we will implement our transformation in early year 2 and obtain concrete running
times.

3.1.2 Privacy-Preserving Genetic algorithms

The study of privacy-preserving methods for solving difficult optimization problems, and the adoption of
existing heuristics for solving (NP-)hard problems to a privacy-preserving setting, is one of the main goals
of UaESMC. In the context of Sharemind (this should apply also to other SMC frameworks based on secure
evaluation of arithmetic circuits), genetic programming seems to be among the easiest to adapt methods
due to its relatively uniform control flow. There have been previous attempts to make genetic algorithms
privacy-preserving, but their security analysis has been lacking [10] or their application area has been very
narrow [7].

In year 1, we have investigated the adaption of genetic algorithms to SMC frameworks, particularly to
Sharemind. We have applied privacy-preserving genetic algorithms to the optimal subset cover problem
(NP-hard) and to the shortest path problem in graphs. The general methods we have learned through these
applications, may, however, be even more important than the results obtained for the particular problems.
Our studies have brought new insights to the best methods for mutating and crossing over the candidate
individuals, and for selecting a predetermined number k of individuals with top fitness.

Performance Evaluation

We implemented the genetic algorithm solving the subset problem described in Sec. 3.2 of deliverable D2.2.1
using the Sharemind system. We generated a 10× 16 binary matrix A and an integer cost vector c inspired
by the countermeasure selection scenario that motivated our study of the privacy-preserving subset cover
problem. We created a data importer that was used to load A and c into a Sharemind installation. We
then developed the described genetic algorithm in the SecreC programming language that is used to im-
plement Sharemind applications. We implemented the oblivious top-k as a new protocol in Sharemind for
optimization purposes. We then created a testing application that let Sharemind compute the output x on
all possible inputs t using the genetic algorithm. We also computed all the optimal solutions using Sage
and the GNU Linear Programming Kit and used the results as reference values to evaluate the correctness
of the private implementation.

The Sharemind system was deployed on three computers running on a local network. The computers
contain 12 CPU cores and 48 gigabytes of RAM. However, during experiments we saw that at most two cores
per machine were being fully used and the memory usage of Sharemind did not grow over 150 megabytes.

We ran the tests for generation sizes k = 8, 12, 16, 23, 32 and number of generations g = 5, 10, 20. For
each of the pairs of these values, we determined the percentage of correctly computed optimal costs out of
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g = 5 g = 10 g = 20

k = 8 3.71% (3711 ms) 45.21% (7187 ms) 78.22% (14167 ms)

k = 12 18.75% (4220 ms) 79.39% (8186 ms) 92.87% (16120 ms)

k = 16 55.66% (4733 ms) 95.61% (9247 ms) 99.51% (18291 ms)

k = 23 89.55% (5420 ms) 99.80% (10546 ms) 99.90% (21008 ms)

k = 32 99.32% (6440 ms) 100.00% (12702 ms) 100.00% (25164 ms)

Table 3.1: Accuracy and running time of the privacy-preserving genetic algorithm for g generations of size
k.

210 = 1024 possible input vectors. We also measured the average execution time. The results are displayed
in Table 3.1.

We see that in already under 6.5 seconds it is possible to achieve near-perfect performance of the
algorithm, and that increasing the size of the generation helps to obtain better precision with much lower
cost in time compared to increasing the number of generations.

Our implementation was optimized by using vector operations. Our profiling showed that in one six-
second run, the secure computation platform performed tens of thousands of additions, multiplications and
comparisons, showing the high performance of the underlying platform.

Similarly to the secure subset cover problem, we used genetic algorithm to solve the single pair shortest
path problem for graphs detailed in Sec. 3.3 of deliverable D2.2.1. The underlaying basic genetic algorithm
is the same, but the data structures are larger (adjacency matrices of directed graphs take O(n2) space) and
the fitness function is different. We used vectorization to apply most functions to the whole generation in one
go rather than applying them to each individual separately. As part of the fitness function we must check if
the individual actually contains a valid path. Unfortunately, using the equation shown in deliverable D2.2.1
for this gives suboptimal results as it often rejects individuals that only slightly deviate from the optimal
path and only accepts individuals with a very specific pattern. As a result, the genetic algorithm rarely finds
a solution that is sufficiently close to the optimal solution. This spoils the idea of incrementally improving
the results and is therefore not suitable to be used in genetic algorithms.

3.2 Statistical Analysis

In Chapter 2 we mention privacy-preserving statistical analysis of structured data as one of the problems that
UaESMC will provide tools for. We have started the consideration of this task by specifying the operations we
want to see implemented and relationships between them. Altogether, these operations comprise an abstract
data type, allowing the manipulation of the analyzed data by applying different filters and projections on
it, as well as running different statistical tests on the current data. See Deliverable 4.1 [9] for the complete
specification.

In year 1, we have started designing and implementing the functionality for statistical analysis.

3.2.1 Oblivious Sorting

Sorting a table may be a goal in itself. It is also a useful primitive when selecting certain extremal rows of
the table, when hiding the order of the rows, or in preparation of merging the table with a different one.

An oblivious sorting procedure has its control flow independent of the sorted data. In our approach, such
a procedure is based on sorting networks. Our sorting protocol the main component of the secure subset
cover solution and profiling showed that the majority of the running time of the genetic algorithm was spent
by the sorting algorithm. Therefore, the performance timings of the secure subset cover algorithm illustrate
the running time of the sorting algorithm with the described sorting parameters.
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3.2.2 Implemented Statistics and Tests

Not all statistical functions can be precisely computed on integers. To achieve more precise results, our work-
in-progress implementation of the statistical functions and algorithms uses the secure floating point features
in Sharemind 3. However, the Sharemind 3 system is currently being developed under a confidentiality
contract that requires that materials regarding Sharemind are published only after they have been cleared
for publication. This process could not be completed by the time of delivering this document.

3.2.3 Data Classification

The division of data into several different classes is another important means of understanding it, and tools
to do it in a privacy-preserving manner will be a part of our statistical analysis suite. To integrate with
other parts of the suite, we have implemented the Kernel Perceptron algorithm on top of the Sharemind
platform, optimized it for that platform, and measured its performance.

We have tested the implemented Kernel Perceptron algorithm on the Iris dataset. Some modifications
have been done to it before testing:

• Although the original dataset has three distinct classes, the first and the third classes have been merged
together so that the classifier could be tested on separating just two classes.

• All the values have been scaled to integers. This is withoutlessening of generality — we can just
imagine that all the measures are scaled up, such that their ratios remain the same.

• For simplicity, the classes are marked just ”1” and ”-1”. If we want to introduce a third class, we may
label them for example with two bits: ”1 1”, ”1 -1”, and ”-1 -1”.

The set has been tested for different fractions of the iterations computed in parallel. The graphs in
Fig. 3.1 show how the time and true positive/true negative (TP/TN) rate grow with the number of ”global
iterations” (how many times the entire for-cycle is repeated). Each test has been performed 10 times, and
the average has been taken.

The horizontal axis on the graphs repesents the number of iterations, and the vertical axis is the per-
centage of correct answers.

The initial version of the algorithm is supposed to work until convergence. This implementation uses an
upper bound for the number of iterations that is given as a parameter. The main problem is actually that
checking if the vector has changed would in turn require additional communication, although not too much
since the additional comparison needs to be done only once per iteration. Working until convergence would
also be much slower (depending on the given threshold - how much of the training set is classified correctly).
Overlearning is also not too good.

The graph in Fig. 3.2 shows how the time grows with the number of iterations. Four different lines show
the time (in seconds) for different fractions of the iterations computed in parallel.

3.3 Strong Truthfulness

A fundamental assumption throughout Game Theory and Mechanism Design is that all participating players
(agents) are fully rational and act selfishly: they have their own well-defined utility function and they only
care about optimizing this function. In particular, if truth-telling (about one’s preferences) is the dominant
strategy equilibrium in some game, then the players are assumed to do exactly that. This assumption might
indeed be true if one looks at the “big picture”, but when considering a subprotocol of some large system,
the other parts of that system may introduce externalities with respect to this subprotocol, invalidating that
assumption.

A mechanism is truthful if telling one’s true preferences is a dominant strategy for players. However,
this does not exclude a player getting exactly the same benefit in some situations by lying to some extent.
If there are externalities in the form of other, related games the same set of agents is playing, then this
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Figure 3.1: Correct answer rate of the kernel perceptron algorithm
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Figure 3.2: Running times of the privacy-preserving kernel perceptron algorithm
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lying may bring it some benefit in some other place. A mechanism is strongly truthful, if any deviation from
truth-telling is guaranteed to bring harm to the player. Bigger deviations bring more harm; the notion of
strong truthfulness is quantified by the conversion factor. In deliverable D3.2 we show that strongly truthful
mechanisms (with sufficiently large conversion factors) for sub-problems are sufficient to obtain strongly
truthful mechanisms for the whole problem. We also present a general technique of constructing strongly
truthful mechanisms from truthful mechanisms.
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Chapter 4

Work Plans for Year 2

In the second year of UaESMC we will continue to improve our solutions for the identified problems, described
in Chapter 2. We will increase the efficiency and robustness of the existing solutions, as well as extend them
to cover aspects we have not considered yet. At the same time, we will also start consolidating our techniques
into a framework that will be delivered at the end of the project.

4.1 Optimization

We will continue the work on both linear programming and on the privacy-preserving algorithms for NP-
hard optimization problems. For linear programming, we will study further the computational assumptions
we’ve made, trying to identify any shortcomings they may have, and possible fixes for them. For NP-
hard problems, we will study how to implement other heuristic optimization methods (e.g. ant colony
optimization, simulated annealing, etc.) on Sharemind and other typical platforms for SMC.

Our secure linear programming approach has currently not been implemented on Sharemind, nor have
the details of implementing its private computations on a SMC framework been fully worked out. This work
also has to be done during year 2.

In year 2, we will also concentrate more on the shortest path problem in graphs, especially in the context
of network management. This will allow us to look at SMC techniques in the setting of limited connectivity.

4.1.1 All-Pairs Shortest Paths

In the all-pairs shortest path (APSP) problem, the goal is to find the distances and/or the shortest paths
between all vertex pairs in a graph G = (V,E,w). Here V is the set of vertices, E ⊆ V × V is the set
of (directed) edges and w : E → R gives the length of each edge. We are particularly interested in the
version of the problem stemming from the network management area. In this problem, the set of vertices is
partitioned into V = V1 ∪̇ · · · ∪̇ Vk. The set Vi corresponds to the border gateways in the network managed
by the i-th ISP. The edge lengths between nodes in Vi are known by the i-th ISP (and considered a business
secret by it). The edge lengths between a node u ∈ Vi and a node v ∈ Vj are known at least by the i-th
and j-th ISPs. We assume that two gateways in the same network are best connected through this network.
Hence, if two nodes belong to the same part Vi, then the shortest path between them will only pass through
nodes in Vi. We can assume that before starting multiparty computation, each ISP has already found the
distances between the gateways in its network. Hence the graph G is a complete graph when restricted to
a particular Vi. Also, if u, v ∈ Vi, then the distance from u to v equals the length of the edge from u to v.

In this setting, we will study the use of adopting generic APSP algorithms to SMC frameworks (taking
into account that distances between two nodes in the same part have already been computed). We will also
consider the adaptation of privacy-preserving graph algorithms by Brickell and Shmatikov [6] from two-party
to multi-party setting.
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4.2 Statistics API

In deliverable D4.1 we have described a numerous set of statistics and data analysis primitives that a
SMC engine should support in order to be usable for the analysis of statistical data. Certain primitives
have already been designed and implemented, as described in Sec. 3.2. In year 2, we will complete the
implementation of the API. By the end of year 2, Task 1.3 will produce an example prototype application.
It is quite likely that the developed statistics API will find significant use in it.

4.3 Mechanism Design for Statistical Data Collection

The DoW identified the lack of motivation by the data owners to submit truthful data as one issue hindering
the use of SMC in statistical data collection. To overcome this, we have to quantify the data owners’
motivation to lie, their desire to learn the correct result of the analysis, the effect of lying to their reputation,
etc. These quantities could serve as inputs to mechanism design, designing a game and payment modalities
to obtain truthful results of analyses. We cannot hope to give precise values to these quantities in UaESMC,
but we can study how the relationships between these quantities affect, whether parties are motivated to
tell the truth.

Similarly, we can study the motivation of the participants of a secure multiparty computation (at the
same time, they are also data owners) to collude with some other party and recover the data of third parties.
Here we must characterize parties’ desire to learn other parties’ data, their fear of leaking their own data,
and the computation mechanism’s characteristic to prevent the singling out of data belonging to only some
of the parties. We believe that shuffling the data input by the parties at the beginning of the protocol will
make it much harder to detect which record was provided by which party.

4.4 Mechanisms for Playing Games

In Sec. 2.4 we outlined a general problem making the players of a game to make the move that the (trusted)
mediator has selected for them. In year 2, we intend to investigate SMC mechanisms for implementing such
mediators, and for using non-repudiation usually offered by digital signatures to bind the players to their
allocated moves in an accountable manner. This task will integrate some of the solutions we’ve developed
in year 1, as well as pose some new interesting problems:

• Finding a set of moves that maximizes some sort of social welfare is an optimization task. It is well-
known that correlated equilibria may be found through linear programming. As far as we know, noone
has yet tried this in practice in a privacy-preserving manner, because of high computational complexity
of the task. With parties being bound to make the moves assigned to them, other choices of moves
may be possible, the finding of which translates into an optimization task of some different kind. We
will investigate the ways to make the choices of moves and privacy-preserving methods to compute
them.

• Non-repudiation requires that the certificates and secret signing keys of parties are used in the com-
putation in some manner. It is likely that the necessary public-key operations can be performed under
SMC in a more efficient manner than directly implementing the arithmetic circuits for these opera-
tions in some SMC framework. In year 2, we will come up with privacy-preserving methods for these
operations and for their integration with other SMC methods and frameworks.

• Public-key infrastructure has been deployed in many countries and organizations, using more or less
standard protocols, software and hardware. A particular example are the electronic identity cards
and mechanisms deployed by several European countries. In these mechanisms, the secret key of a
person is stored on a smartcard that is capable of executing certain operations with it (including
the issuance of signatures conforming to certain standards). The set of operations a card executes is
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limited for security purposes. In UaESMC, we will study whether the available electronic identity and
non-repudiation infrastructures can be directly used in our mechanisms, or do we need to access the
secret signing keys in a manner that is not made available by tokens storing them.

4.5 Progress towards the UaESMC Framework

The UaESMC framework will be a set of recipes for choosing the techniques and implementations of SMC for
a particular secure computation task. It will be organized along the dimensions identified in the Description
of Work [2, Sec. B1.1.3]. During the first year of the project, as well as in activities that the partners
have run in parallel with this project, we have already studied the effects of variation along certain dimen-
sions characterizing the computation (Data Types, Complexity of Computation, Benefit of Misbehaving).
More work remains to be done for other dimensions; particularly interesting results can be expected from
studying the cost of information leakage / benefit of obtaining the result, and the availability of additional
infrastructure.
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