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Executive Summary:
Scientific Progress Analysis and Recommendations

This document summarizes deliverable D5.2.3 of project FP7-284731 (UaESMC), a Specific Targeted Re-
search Project supported by the 7th Framework Programme of the EC within the FET-Open (Future and
Emerging Technologies) scheme. Full information on this project, including the contents of this deliverable,
is available online at http://www.usable-security.eu.

In this document we report on the current status of the various secure multiparty computation techniques
we have investigated in the UaESMC project. We give benchmarking results wherever possible, and describe
the theoretical and practical significance of the results we have achieved and are yet planning to achieve.
We find that we have made significant progress in different kinds of techniques, filling the gaps identified
in previous periods, and these techniques have a good chance of combining into a full-fledged theoretical
framework for privacy-preserving computations of very different kinds.
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Chapter 1

Introduction

The goal of UaESMC is to increase the use of secure multiparty computation (SMC) techniques both in
numbers and in variety. The project works toward this goal by looking for real-life problems that could
most benefit from SMC techniques, by determining the reasons why these techniques are not used, by
proposing solutions that overcome these reasons, and by demostrating the usefulness of these solutions.

During the last reporting period of UaESMC, our main focus has been on proposing privacy-preserving
protocols for many different computational problems, trying to achieve a wide variety in terms of the kinds
of data and the structure of computations. We have worked on solving linear equation systems, on discrete
algorithms working on graphs, strings, or state-transition automata, and on algorithms that select the
representation of data based on its characteristics. We have also worked on increasing the privacy of the
results of a statistical study by converting it to a differentially private mechanism, while still getting the
computational privacy benefits of SMC. Several of our applications have benefitted from our novel protocols
for reading or writing to an array according to a private index. Besides applications we have also continued
the study of novel methods for building SMC protocols, in particularly making the protocols secure against
stronger than passive adversaries.

We have also continued to study the limits of certain techniques, both for privacy-preserving compu-
tations and for certain mechanisms to be executed on top of it. We describe our results in detail in the
respective deliverables [29, 21, 25], but an overview of them and their relationships is given in the next
chapter.

We note the importance that the Bitcoin infrastructure [46] (or in general: the infrastructure provided by
ledger-based cryptocurrencies) has started to play in strengthening the properties of SMC. The availability
of such infrastructure gives a common reference point for the parties in a multiparty protocol, giving them
a functionality for Byzantine agreement, as well as for incentives to faithfully participate in the protocol.
While the full impact of such infrastructure on SMC and other cryptographic protocols will be mapped out
in future scientific results, we have made contributions in UaESMC by investigating the fairness guarantees
the infrastructure can give, as well as provide a game-theoretic robustness analysis of core Bitcoin protocols.
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Chapter 2

Progress during third reporting period

2.1 Limits of private computation

2.1.1 Transformation-based private outsourcing of linear equation systems

Linear programming was selected as one of the problems that the work in UaESMC should concentrate on.
We were particularly interested in privacy-preserving protocols for linear programming where the privacy
is achieved through problem transformation. Using this approach, the original problem is scrambled in the
private domain, and the resulting linear programming problem is made public. The published problem is
solved using conventional algorithms, and the result is again unscrambled in the private domain, using the
randomness generated during scrambling. Hopefully, this is more efficient than directly solving the problem
in the private domain. Also, the scrambling transformation must be such, that not much about the initial
problem is leaked through the scrambled problem, even to a party that knows a part of the formulation of
the initial problem. A number of problems from linear algebra, including the solving of systems of linear
equations over finite fields, are amenable to privacy preservation through problem transformation.

In previous year, we have found that the existing scrambling methods for linear programs are flawed [38]
and improving them would be difficult [39]. Hence we planned to study novel methods of different kind
for solving LP in privacy-preserving manner. Both the simplex method and interior point methods are
iterative, hence they are not a perfect match for the secret-sharing based basic SMC protocols offered by the
Sharemind SMC platform that we use in our work. Interior point methods usually perform less iterations,
but each iteration is more complex and involves solving a system of linear equations over real numbers. We
hoped that these systems could be privacy-preservingly solved by some transformation-based method. In
particular, we asked whether a non-singular matrix over reals could be inverted in this manner.

We have obtained both positive and negative results. For scrambling the input matrix, we have considered
random affine transformations. We have shown that the most general usable affine transformation is the
one, where the scrambler generates two random non-singular matrices of the same size, and multiplies the
input matrix with them from both sides. We have also shown that it is insufficient to multiply just from
one side — if such scrambling were privacy-preserving for some set of possible input matrices, then they
are of a special form that is easier to invert than to scramble. It is also likely that the same holds when we
multiply from both sides, but we have not yet obtained a general result for this case.

The impossibility results named in previous paragraph only apply for perfect security. If only statistical
hiding of the input matrix is desired, then, for certain sets of possible input matrices, there exist scrambling
methods that are privacy-preserving, yet useful. We discuss them in Sec. 2.3.1.2.

We also note that the scrambled matrix definitely leaks the absolute value of the determinant of the
original matrix. Hence this piece of information must be non-sensitive.
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2.1.2 Bitcoin: A Game Theoretic Approach

One of the major concerns of the UaESMC project is the construction of SMC protocols that employ game-
theoretic assumptions instead of using heavy cryptographic assumptions. With the advent of the Bitcoin
protocol [46], SMC can be implemented using Bitcoin’s global transaction ledger, while guaranteeing fairness
in the presence of dishonest majority ([3, 4, 7, 34, 33]). This is achieved using a compensation mechanism
which imposes fines to the parties that deviate from the prescribed protocol.

The application of ideas from the game-theoretic context in SMC provides robust SMC protocols which
are built on top of Bitcoin. For this reason, analysing Bitcoin in the game-theoretic context is mandatory.
Our ongoing work [32] aims to provide a game-theoretic modeling and analysis of the Bitcoin protocol,
motivated by [20], in which the authors show that Bitcoin is not incentive compatible, i.e., participants that
do not disclose information related to their actions, as it is dictated by the protocol, they receive higher
payoff than following the protocol. Their main assumption is that participants are split into two groups.
Those assumed to be the honest majority following the protocol, and a minority group that follows a strategy
called “Selfish mining”. In [32] we provide a game-theoretic model for Bitcoin, and we aim to analyze the
circumstances under which following the protocol is a Nash equilibrium, while having no assumption on the
network structure.

2.2 Constructing SMC protocols

2.2.1 From privacy to security

We construct larger SMC protocols for various computational tasks from smaller ones, typically for additions,
multiplications, and other arithmetic and relational operations. For the security proofs of the large SMC
protocols to be feasible to construct, the security properties have to be compositional, such that the security
of the smaller protocols, and their black-box use by the large protocol, directly implies the security of the
large protocol. In the protocol set of Sharemind, the small protocols often perform some extra steps for
the purpose of satisfying composable security properties. It has been known that sometimes, some of these
steps may be left out in composed protocols, without breaking their security.

We have studied [12] the simulation-based security of Sharemind’s protocols and have identified a
weaker property, called input privacy, which is often sufficient for the construction of large SMC protocols
from smaller components. We say that a protocol is input-private if all that a party learns could be deduced
from its inputs. This is weaker than simulatable security, which also requires that a party’s output in the
real protocol should be indistinguishable from its output if an ideal component had been used instead [14].
We have found that input privacy can also be stated in the UC framework, and it is composable, at least
in the forms that we need for constructing large SMC protocols. Another important property is, that the
sequential composition of an input-private protocol and a secure protocol is again secure. This allows us
to construct the whole protocol for a sizable computational task using input-private building blocks, and
perform some extra steps for security only at the end. The efficiency gain of this approach is significant for
protocols with many intermediate steps.

Our current results only consider security against honest-but-curious adversaries. The notion of input
privacy readily generalizes to malicious adversaries as well, and so does the composition theorem for input-
private protocols. A full generalization of our results to malicious adversaries still needs a good formalization
of correctness of protocols that have not yet delivered their outputs.

2.2.2 Verifiable protocols with preprocessing

SMC protocols secure against honest-but-curious adversaries are easier to construct than protocols secure
against malicious adversaries. The first kind of protocols are typically also much more efficient in practice
(by at least a couple of orders of magnitude), if considering the entire required computational and communi-
cational effort. There are protocol sets, e.g. SPDZ [16] secure against malicious adversaries, that can deliver
the outputs of a computation from its inputs with the effort similar to best honest-but-curious protocols,
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but they also have a complex offline preprocessing stage that dominates the computations. Hence there has
been interest in security against adversaries of intermediate power. We have considered verifiable protocols.
These are protocols that catch the deviating, adversarially controlled parties after the end of its run, in a
postprocessing phase.

We have previously presented a verification mechanism based on linear probabilistically checkable proofs [40].
In this mechanism, the majority of the protocol participants had to be honest, such that a sufficient number
of parties flagging a particular party as dishonest is a proof of its dishonesty. The mechanism required the
protocol participants to compute new outgoing messages from the existing ones using arithmetic circuits
over a finite field. Post-execution, the parties secret-shared all their incoming and outgoing messages among
others, and the correctness of computation could be verified.

We have now proposed a different verification mechanism [41], where the internal computations can be
done over any finite ring, and actually several rings can be simultaneously used. This is a much better
match for the protocol set of Sharemind that uses secret sharing over rings Z2n . The post-execution effort
is also much smaller thanks to a new preprocessing phase. In this phase, a sufficient number of multiplication
verification triples are generated. This already verified triple can be used to verify that a party correctly
performed a multiplication during the execution phase. The generation is similar to SPDZ that also generates
multiplication triples. However, the use of these triples is rather different, with SPDZ using them to multiply
secret-shared values during the execution. We also differ in the computational complexity of generating the
triples — verification triple generation is much easier due to their content being known to the party whose
behaviour will be verified.

We thus have a mechanism for turning passively secure (SMC) protocols into protocols secure against
adversaries performing active attacks, who want to avoid being caught. The mechanism only negligibly
increases the effort necessary during the execution phase of the protocol. It adds a post-execution phase,
which is probably not more than an order of magnitude more complex than the execution phase. It also
adds a pre-execution phase which requires a similar level of effort. The implementation of the proposed
mechanisms is subject of work to be performed in near future.

2.2.3 Bitcoins for fair SMC

Inspired by the development of the field of Mechanism Design [45, 47] within Game Theory [51], that in
the view of the seminal impossibility results of Arrow [5] and Gibbard-Satterthwaite [22, 50] provided a rich
and powerful tool to implement social choice rules via the use of monetary transfers, we try to make a step
towards an analogous development of a formal model for the deployment of cryptocurrencies to circumvent
the classic impossibility cryptographic results of [15].

Our contribution in [33] is three-fold. Firstly, we put forth a new formal model of SMC with compensation
and we show how the introduction of a suitable ledger and synchronization functionalities make it possible to
express completely such protocols using standard interactive Turing machines (ITM), circumventing the need
for the use of extra features that are outside the standard model (in comparison, the only previous model [7]
resorted to specialized ITM-s that utilize resources outside the computational model). Secondly, our model
is expressed in the global universal composition setting and is equipped with a composition theorem that
enables the design of protocols that compose safely with each other and within larger environments, where
other protocols with compensation take place; a composition theorem for MPC protocols with compensation
was not known before. And finally, we introduce the first robust MPC protocol with compensation, i.e. an
MPC protocol where not only fairness is guaranteed (via compensation) but additionally the protocol is
guaranteed to deliver output to the parties that get engaged and therefore the adversary, after an initial
round of deposits, is not even able to mount a denial of service attack without having to suffer a monetary
penalty. Importantly, our robust MPC protocol requires only a constant number of (coin-transfer and
communication) rounds.
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Num. variables. Cramer Gaussian elim. LU decomp

2 0.6 s
3 1.1 s
4 2.9 s 3.1 s
7 9.4 s 8.7 s

10 21.5 s 19.1 s

Table 2.1: Performance of linear regression on 10000-element arrays (in seconds)

2.3 SMC Applications

2.3.1 Solving systems of linear equations

Privacy-preserving statistics has been one of the main foci of UaESMC. The statistical methods for dis-
covering relationships between variables often require systems of linear equations to be solved. Hence we
have studied privacy-preserving methods for solving these systems, where the coefficients (real numbers)
are secret-shared among the computing parties, and the solution vector has to be obtained in a similarly
secret-shared manner. We are interested in solving systems where the number of equations and variables
is equal. If such systems are non-singular, then they have exactly one solution. We have studied both the
translation of known algorithms into SMC protocols, as well as transformation-based methods.

2.3.1.1 Numeric methods

For small systems (up to 3 variables) we use Cramer’s rule. We have implemented the computations of
necessary determinants in the private domain. For these computations, as well as for the methods described
below, we build on the representations and the set of protocols we have for expressing and computing on
floating-point values on the private domain [30].

For larger systems, we have shown how the methods of Gaussian elimination and LU decomposition can
be adapted to run on top of a SMC framework. Both methods heavily depend on pivoting that should take
place around an element with the largest absolute value, in order to minimize numerical instabilities. We
have thus proposed a method for finding this element among a vector of elements. We do not want to leak
the position of this value, but nonetheless use the index of that position in subsequent pivoting. This would
normally require techniques for oblivious array access (Sec. 2.3.2), but in our case, we fortunately can hide
the position by permuting the columns of the matrix of the system of equations.

We have implemented the protocols for solving systems of linear equations on top of the Sharemind
SMC framework, and have included them in the Rmind tool for privacy-preserving statistical analysis [11]
as part of the protocol for linear regression. We tested the performance of the protocols on a Sharemind
installation running on three computers with 3 GHz 6-core Intel CPUs with 8 GB RAM per core (a total of
48 GB RAM). The computers were connected using gigabit ethernet network interfaces. The running times
of linear regression on 10000-element arrays, using either Gaussian elimination or LU decomposition, are
given in Table. 2.1.

2.3.1.2 Transformation-based methods

In Sec. 2.1.1 we describe the principles of transformation-based outsourcing and its use in SMC protocols.
We are interested whether the inversion of a matrix A ∈ Rn×n can be outsourced in a privacy-preserving
manner. We have shown that in general, it is impossible. However, it is possible if the set A of possible
matrices A has been restricted in some manner.

We have shown that for certain classes of matrices A, we can define the distribution of matrices P,Q ∈
Rn×n so, that the product PAQ statistically hides A, while the entries of P and Q are not too much larger
than the entries of A. We require that for a certain matrix decomposition (QR-, or LU-, or singular value,
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or eigenvalue, etc.), all A ∈ A are such, that in the decomposed form, the entries on the main diagonal
of (some of) the matrices in the decomposition are certain constants. Then we can statistically hide the
component matrices by multiplying them from left or from right. This hiding is based on our ability to
perfectly hide orthogonal matrices, and to statistically hide triangular matrices with fixed main diagonal by
multiplying them with a suitably distributed matrix from one side only.

2.3.2 Parallel Oblivious Array Access

Suppose we have a private array of length n and a private index. We want to obtain a private representation
of the array element under that index. This is a non-trivial task. The most straightforward privacy-
preserving solution involves expanding the index into its characteristic vector of length n, and computing its
scalar product of the original array, for a total work of O(n), or O(n) overhead compared to public look-up.
Using the techniques of oblivious RAM [42, 31], the overhead can be reduced to around O(log3 n). Similar
overhead is associated with updating a private array at a private position.

Our secret-sharing based SMC protocols require significant parallelism from the higher-level applications
in order to implement them efficiently. In this case, many accesses of a private array can also be assumed
to take place in parallel. In [36] we give protocols for reading m values in parallel, or writing m values in
parallel to an array of length n. Both our protocols have the asymptotic complexity O((m+n) log(m+n)),
or O((1 + n/m) log(m + n)) overhead per operation. We see that if m is small (e.g. constant), then the
overhead may be even larger than for trivial protocols. However, if m = Θ(n), then the overhead is just
O(log n). Also, the constants hidden in the O-notation are very reasonable.

Our protocols for both reading and writing have the following important property. They can be seen
as the composition of two protocols, the first having the complexity O((m+ n) log(m+ n)) and the second
having the complexity of just O(m+n). The first protocol takes as inputs the indices to be read or written,
and the length of the array, but not the elements of the array or (in case of writing) the new values to be
written into it. Hence, if an application reads or writes several times according to the same indices, accessing
the same or different arrays, then the first, expensive protocol has to be invoked only once.

We have implemented the protocols on top of Sharemind SMC framework, providing a set of SMC pro-
tocols for three parties, and secure against a single honest-but-curious party. We measured the performance
of our protocols. The measurements were taken on a cluster of three machines (each of them hosting one of
the computing parties), connected to each other with dedicated links of bandwidth 1 Gbit/s. The running
times of reading n/2 values from an array of length n/2 are given in the left part of Fig. 2.1. We have
timed the two component protocols separately. We see that the second part (actually performing the read)
is almost two orders of magnitude faster than the first part (preparing for reading). Hence the applications
should minimize the invocations to the first part.

The right part of Fig. 2.1 gives the execution times for the two parts of writing protocol, again writing
n/2 values to an array of size n/2. We see a similar proportion between the running times of preparing a
write according to certain indices, and actually performing it.

2.3.3 Graph algorithms

2.3.3.1 Minimum spanning tree (MST)

We have used the oblivious array access protocols described in Sec. 2.3.2 to devise a protocol for privately
finding the minimum spanning tree in a weighted graph that has been stored in the private domain, i.e.
the description of the graph has been secret shared among the computing parties. In our setting, only the
number of vertices and the number of edges are public. For each edge, its endpoints and its weight have
been stored in the private domain.

The well-known algorithms of Kruskal and Prim are inherently sequential, hence unsuitable for being
adapted as a protocol for privately finding the minimum spanning tree. We have adapted the parallel
algorithm by Awerbuch and Shiloach [6] into an SMC protocol, which we describe in [36]. The required
adaptations are relatively minor. We simplify the control flow of the algorithm — instead of iterating the
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Figure 2.1: Times for preparing (upper) and performing (lower) a parallel operation, depending on the sum
of vector length and the number of individual operations
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Figure 2.2: Running times for the private MST algorithm, depending on the number of vertices n. Number
of edges is m = 3n (lower line), m = 6n (middle line), m = n(n− 1)/2 (upper line)

main loop of the algorithm as long as there are changes, we iterate it the maximum necessary number of
times.

The asymptotic complexity of the Awerbuch-Shiloach algorithm is O(|E| log |V |) work in O(log |V |) time.
Our oblivious array access protocols induce a logarithmic overhead, hence the communication complexity
of our MST protocol is O(|E| log2 |V |) and the round complexity is O(log2 |V |). We have measured the
performance of our protocol on hardware described in Sec. 2.3.2. The running times are presented in
Fig. 2.2. We see that we require less than 9 hours to privately find the minimum spanning tree of a graph
with 200,000 vertices and 1,200,000 edges, showing that for MST-like graph problems, the SMC protocols
definitely scale to sizes relevant in real-world applications.

2.3.3.2 Single-source shortest distances (SSSD)

Finding shortest distances in graphs in privacy-preserving manner has been previously investigated several
times [13, 2, 42, 31], often serving as a common example for proposed SMC frameworks. When applied
for sparse graphs with private structure, the SSSD often requires techniques of oblivious RAM, in order
to propagate the distances along the edges of the graph. In previous year [10], we proposed a technique
for looking up values from an array according to private indices, which pushed most of the work into
a preprocessing stage and had no overhead during the actual execution of the algorithm. We have now
used this technique to give a privacy-preserving implementation of the Bellman-Ford algorithm [35]. In
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Table 2.2: SSSD execution benchmarks (times in seconds)

n 100 100 100 100 300 300 300 600 600 600 1000 1000 2000

m 100 600 1000 9900 300 1800 3000 600 3600 6000 1000 6000 2000

offline 0.3 1.3 1.9 19 5.2 31 52 41 240 400 190 1100 1540

online 6.0 7.9 9.2 68 10.4 49 72 39 190 310 110 580 550

previous works, Dijkstra’s algorithm has been used for SSSD, but we find Bellman-Ford to be more suitable,
because its data accesses and control flow depend less on the private structure of the graph. In particular,
our implementation performs no array writes according to private indices (we have no preprocessing-based
protocol for that), which would have been unavoidable in a protocol based on Dijkstra’s algorithm.

We have implemented the Bellman-Ford algorithm on top of the Sharemind platform, hiding the struc-
ture of the graph, as well as the lengths of edges. In our implementation, the numbers n = |V | and m = |E|
are public, and so are the in-degrees of vertices (obviously, these could be hidden by using suitable paddings).
During the execution, we use private lookup to find di[s(e)] for an edge e, where s(e) denotes its source
vertex, and di[v] is the shortest distance from the source vertex to v when considering only paths with at
most i edges. As the vectors di have to be computed one after another, but the elements of the same vector
can be computed in parallel, our implementation has O(n) rounds in the online phase.

We have measured the performance of our implementation on hardware described in Sec. 2.3.2. The
execution times of both the offline preprocessing, and online phase are given in Table 2.2.

The parallel oblivious array access protocols described in Sec. 2.3.2 are also highly suitable for imple-
menting the Bellman-Ford algorithm, even without leaking the in-degrees of vertices. We believe that in
future, these protocols should be used in protocols for privately finding shortest distances.

2.3.4 String algorithms

2.3.4.1 String matching

The privacy-preserving implementations of string algorithms are common examples in SMC protocol re-
search, particularly for the case of garbled circuits, as many well-known string algorithms (e.g. the Knuth-
Morris-Pratt for string matching) are inherently sequential and thus unsuitable for implementation on top
of a secret-sharing based SMC framework. A PRAM algorithm for string matching is described in the well-
known textbook [28]. Using the protocols for oblivious parallel array access (Sec. 2.3.2), we have adapted
this algorithm to run as a privacy-preserving protocol on top of the secret-sharing based Sharemind SMC
framework. In our implementation, the text from which we search a pattern, and the pattern itself are
input to the protocol in a secret-shared manner. Namely, each character of the text or the pattern has been
shared separately. The lengths of the string and the pattern are public.

A key step of a parallel string matching algorithm is comparing two positions in the text for the purpose
of excluding one of them as the starting position of the pattern. Repeated application of this “comparison”
allows to significantly reduce the number of possible starting positions, such that the remaining positions
can be trivially checked. When designing an SMC application, an important consideration is, how many
positions to compare in a single shot. Using binary comparisons optimizes the amount of communication,
but comparing more positions at once may reduce the number of rounds we need. We have implemented
both the comparison strategy based on binary trees, and strategy based on doubly-logarithmic trees. We
have also considered a mixed strategy, where first few comparison rounds are binary, and afterwards switch
to comparisons according to the doubly logarithmic tree.

We have measured the performance of our protocols on hardware described in Sec. 2.3.2. The results
of matching a pattern of variable length against a text of 1000, 10000, or 50000 characters are given in
Fig. 2.3. Beside the running times of the PRAM algorithm adaptation using different comparison strategies
we also present the running time of a brute-force algorithm that compares each position of the text with
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Figure 2.3: Running times of privacy-preserving string matching protocols

each position of the pattern and combines the results.

2.3.4.2 Log auditing

Spotting unexpected behaviors in activities that involve several businesses is important to discover failures,
errors and inefficiencies. From a behavioral point of view, the “sequence” of activities performed by the
involved parties should be consistent with the business processes of all partners.

Assume two enterprises a and b. For each of the two enterprises we are given events, Σa and Σb,
respectively. Let Σ = Σa ∩ Σb be the events and interactions shared between the two enterprises, while
(Σa ∪ Σb) \ Σ are internal tasks. Enterprise a recorded the log of a process instance ω ∈ Σ∗a by monitoring
enterprise activities. Enterprise b owns a local business process, representing all possible licit executions,
that is given as a bounded labelled Petri net Nb defined over the corresponding local alphabet. Formally,
the problem of log auditing is to compute whether

projΣa∩Σb
(ω) ∈ projΣa∩Σb

(L(Nb)) .

In Chapter 7.4 of the UaESMC book [37] we consider two mutually distrustful parties, one party owning
the log and the other one owning the business process, assuming no trusted third party is available. We
provide privacy preserving log auditing by implementing oblivious execution of deterministic finite automata
on top of the SMC protocol for looking up values from an array according to private indices, which has been
proposed in the previous year [10].

Our implementation is sub-optimal in the round complexity, as it faithfully implements the definition of
the DFA execution. On the other hand, this also implies that many instances of log auditing run in parallel
would have almost the same runtime as a single instance.
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Table 2.3: DFA execution benchmarks (times in milliseconds, ` = 2000)

(m,n) = (3, 2) (15, 10) (100, 30) (1000, 30)

GF (232), additive
offline 12 72 1140 10600
vector-only 5 110 2200 49000
online 563 620 1230 6800

GF (p), Shamir
offline 7 120 2600 27000
vector-only 0 1 89 8100
online 900 900 1230 4300

GF (232), Shamir
offline 12 200 3900 38000
vector-only 0 2 310 32000
online 900 940 1900 13000

Table 2.3 presents the actual running times of our DFA execution implementation. We measured the
running time for different automaton sizes m and alphabet sizes n. The length of the input string was
always 2000 — the work performed by the algorithm, as well as its timing behavior is perfectly linear in
this length. We report our results for different fields and we subdivide the execution times in: (offline) part
that can be done without knowing the actual inputs; (vector-only) part where the actual private DFA is
available; (online) part where the private log is also available.

2.3.5 Analysing business processes

We studied business process engineering techniques in presence of privacy constraints. Our aim is to support
the creation and management of virtual enterprises by a behavioral perspective without threating the par-
ticipants’ autonomy; i.e. without requiring the participant to expose their internal processes and business
procedures.

2.3.5.1 Process fusion

In [23] we investigate a mechanism to establish cross-organizational business processes, or more precisely, to
identify for each participant of a virtual enterprise (VE) which operations can be performed locally. In other
words, we need to compute the contributing subset of the existing local business process that is consistent
with the processes of the other VE constituents. We refer to this problem as VE process fusion.

Assume two enterprises a and b, with their own business processes, that cooperate to build a VE. For
each of the two enterprises we are given a local alphabet, Σa and Σb, representing the set of possible events
and tasks. Each enterprise also owns a local business process, representing all possible allowed executions,
that is given as a bounded labelled Petri net (Na and Nb, respectively) that is defined over the corresponding
local alphabet. The problem of VE process fusion can be defined as computing the mapping:

Ni 7→ N ′i (i ∈ {a, b})

where N ′i ∼ projΣi
(Na × Nb), ∼ stands for trace equivalence, × is the synchronous product and projΣi

hides all transitions that are labeled with symbols not contained in Σi. This describes the problem of
each participant computing from its local business process Ni a new process, consistent with the global VE
business process represented by the synchronous composition.

We address VE process fusion by lifting the problem to privately intersect regular languages, which in [24]
we address by using minimal deterministic finite automata (DFA) as a suitable, non-leaking representation
of regular language intersection.

Additionally to the results of the previous year, we implemented an new prototype based on Moore’s
DFA minimization. We experimented our prototype on a cluster consisting of three computers with 48 GB
of RAM and a 12-core 3 GHz CPU with Hyper Threading, connected by an Ethernet local area network
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Table 2.4: Running times of one iteration of privacy-preserving service matching

service |I| |QSA| |δSA| |QOG| |δOG| |Φ| tprep titer

Online Shop 16 222 531 153 331 735 1m09s 2m29s
Internal Order 9 14 18 512 2304 19172 4m42s 2m33s
Purchase Order 10 137 437 168 548 2074 1m29s 4m14s

with link speed of 1 Gbps. On this cluster, if the minimization is executed on the product of two automata
(i.e. the two automata representing the regular languages of the two participants) having 100 states and a
common alphabet consisting of ten symbols, then one iteration in Moore’s algorithm requires ca. 4.5 s. For
input automata having 300 states this time is 40 s. In the worst case, the algorithm requires to converge a
number of iterations equal to the product of the sizes of the input automata. While these are the execution
times of single iterations, our experiments show that privacy-preserving minimization of DFA is feasible even
for automata with 100,000 states, if the application producing these automata allows us to give reasonable
bounds on the number of iterations necessary for these algorithms to converge.

2.3.5.2 Process Matching

A non-trivial process engineering task is to ensure soundness (i.e., interoperability) of enterprise collabora-
tions. Business process matching consists in a bottom-up soundness check: each (collaborating) enterprise
owns an existing private process, and the task is guaranteeing that their composition is sound. Such a
bottom-up approach must face two problems: (i) the soundness of the composition of “secret” processes
must be checked without revealing information about the constituents, and (ii) if the soundness check fails,
a Boolean result is of little use, since the participants have no information about the global process and thus
can not investigate what is wrong. This prevents the participants from adapting their local procedures to
form a sound collaboration.

In [26] we present a bottom-up approach to checking soundness of interorganizational business processes
that addresses both these problems. To address problem (ii) above, we introduce a measure for behavioral
similarity between two Service Automata. Then, our goal is checking whether the composition of the
automata A and B is sound, and in case it is not, to allow the participant owning A to discover, among all
automata that can be soundly composed with B, the one that is most similar to A.

Our approach is based on the combination of three techniques: (i) we lift the check of the soundness of
the automata composition to matching one of the automata against the Operating Guideline of the other,
(ii) we introduce the notion of weighted matching as a measure for matching degree, and show how to
compute this measure and at the same time extract the behaviourally most similar service that can soundly
collaborate with the other party, and (iii) we implement an algorithm to compute weighted matching while
preserving privacy by means of SMC techniques.

Table 2.4 reports some preliminary studies of the running time of our implementation. We used a
Inter Core i5-4300U CPU running at 1.9 GHz (with four cores) and 8GB memory. The computing parties
communicated with each other over the loopback interface. The traffic volume between two parties always
remained below 1Gbit/s. We use the larger examples from [43]. For the examples we’ve considered, we give
its name, its size (characterized by the number of labels, the number of vertices and edges of the service
automata and the operating guideline. We report the time it took to run a single iteration of the algorithm;
the necessary number of iterations for each task has to be determined from its parameters. We also report
the time it took to set up the data used in the iterations.

2.3.6 Differentially private outputs of SMC protocols

Differential privacy [18, 44] is a property of information-releasing mechanisms which states that the output
distributions of the mechanism may differ only a little for similar inputs. For statistical studies, it goes
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well together with SMC — while the use of SMC to perform a study ensures that information is not
leaked during the computations, the differential privacy of the study problem ensures that the results
of the study, presumably made public, do not allow private information to be inferred. Among several
formalizations of output privacy, differential privacy is one of the most preferred ones, due to its well-
understood properties [27], and its support for simple arguments through composability.

There are several methods to turn a statistical function into differentially private, including the well-
known methods of adding Laplacian noise [18]. In our work, we have considered the sample-and-aggregate
method [48], smoothening the function, such that less noise has to be added in order to obtain the same
level of privacy. We also consider the personal differential privacy (PDP) property [19], which allows to state
more precisely, how much different components of the input (records of the database that is being analysed)
may affect the output distribution.

Using the SMC framework Sharemind, we have implemented a number of statistical functions, and
have applied to it the sample-and-aggregate, and provenance for PDP methods for achieving differential
privacy [49]. We have compared the running times of these functions together, and without methods for
differential privacy. The hardware used for benchmarks is described in Sec. 2.3.2. The running times are
presented in Table 2.5. We have considered the following statistical functions:

• Count of rows. Due to the use of structures for privacy-preserving databases described in D2.2.1 [8],
this is a non-trivial operation — the number of physical rows may be larger than the number of logical
rows, and a private mask column indicates which rows are actually “active”.

• Average and median value of a column (also together with the mask vector). Here ` is the number of
samples used by the sample-and-aggregate method. For different functions, the best value of ` may
be different. For average and count, ` = n gives the best precision for a given level of privacy, where
n is the number of rows.

• Linear correlation coefficient. This is an example of a multivariable aggregation function, trying to
find c ∈ R, such that the values in one column could be approximated as c-fold values of another
column.

The meanings of the columns in Table 2.5 are the following:

• non-diff. private gives the execution time of the SMC protocol without the use of differentially
private mechanisms.

• The columns under “budgets” give the execution times, when the sample-and-aggregate mechanism
is used. When the privacy budget is global, the personalized differential privacy mechanism is not
used and the privacy cost of publishing the result of the query is applied to the whole database. When
the budgets are in-place, the database table has an extra column where the remaining budget of
each row is stored. When the provenance budgets are in use, then each row has a provenance (an
identifier), and each provenance has a remaining budget (stored in a separate table).

The take-away of our experiments is, that the mechanisms of differential privacy do not cause a significant
further overhead to privacy-preserving statistical analysis. When a separate table of provenances (which
has to be joined to the main table during computations) is not used, then the running times are at most a
couple of times higher than the times without differential privacy.

2.3.7 Frequent itemset mining

Frequently co-occurring events or actions often reveal information about the underlying causal dependencies.
Hence, frequent itemset mining is often used as one of the first steps in the analysis of transactional data.
Market basket analysis is one of the most well-known application areas for these algorithms. We have
studied privacy-preserving frequent itemset mining previously [9]. In this study, the set of transactions was
represented as a 0-1 matrix. This representation may be inefficient if the matrix is sparse, e.g. if the number
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function num. rows non-diff. private
budgets:

global in-place provenance

count

10000 392 759 1124 6096
20000 405 768 1241 10672
50000 460 827 1587

100000 594 962 2257
200000 866 1184 3452
500000 7234

1000000 13871

average

10000 443 1099 1475 6598
20000 461 1285 1753 11051
50000 532 1774 2531

100000 694 2625 3873
200000 999 4426 6483
500000 15118

1000000 28995

correlation (` = 100)

10000 822 2455 2826 7663
20000 1001 2665 3157 12693
50000 1556 3278 4092 26833

100000 2473 4312 5525 54767
200000 4443 6359 8548 112300
500000 9721 12218 17895

1000000 19414 22608 33530

correlation (` = 1000)
500000 9850 20115 25961

1000000 19380 30657 41363
2000000 37643 51381 72436

median (` = 100)

10000 851 1332 1708 6548
20000 1327 1737 2131 11786
50000 2318 2137 3502

100000 4620 4075 5312
200000 6498 5559 9198
500000 24175

1000000 34583

Table 2.5: Benchmarking results for differentially private statistical functions running on Sharemind (in
milliseconds)

16



UaESMC Deliverable D5.2.3 Scientific Progress Analysis and Recommendations

of items in each transaction is much smaller than the total number of different items. In this reporting
period, we tried to come up with protocols that make use of the sparsity, also relying on techniques of
oblivious array access (Sec 2.3.2).

An important operation in FIM algorithms is the intersection of two sets. If these two sets are represented
as bit-vectors in an SMC protocol, then their pointwise multiplication gives the bit-vector corresponding to
the intersection. In our current work, we have proposed a protocol for finding the intersection if the sets are
represented as a sequence of indices (of elements belonging to them), or if one of the sets is represented as
a bit-vector and the other one as a sequence of indices.

If we are willing to leak somewhat more about the densities of the columns of the matrix, then it is also
possible to use a mixed representation, where some sets are represented as bit-vectors and some as index
sequences. We have found that this representation indeed allows a speed-up for the privacy-preserving FIM
computation.

In our benchmarks, we made the value of k (the maximal size of an itemset) large enough, so that all
the frequent subsets of arbitrary size would be generated. We have found that it is not so easy to compare
our new results to our previous results. Namely, in the results of [9] the tested threshold t (the minimal
number of transactions that should contain a frequent itemset) is quite large, and using the same numbers
would make no sense for sparse representation, as all the sparse columns are immediately discarded, leaving
only dense columns behind. In addition, the programs of [9] use a much older version of Sharemind and
are not fairly comparable. However, our new implementation has been tested on both sparse and dense
representations.

The achievable theoretical results are far from those that we obtained in practice. As Sharemind
supports data types of fixed size, it is not so easy to be flexible in making the communication dependent
on the parameters of the initial database. In addition, local computation is sometimes more expensive
than an online protocol, and hence in some cases we deliberately increased the communication to win in the
computation time. Although our theoretical algorithm tries to use sparse approach only if it is indeed useful,
in practice there turn out to be sequential jumps between bit and set representation which are sometimes
more expensive than using just bits.

We have indeed obtained efficiency gain for very small values of t. Since small t leaves a lot of columns
behind and makes the task very slow, we have tested only 5500 first transactions of the standard Retail
dataset (which can be found in the Frequent Itemset Mining Dataset Repository [1]). Since it makes no
sense to set t larger than the size of sparse column, we had to start from t = 30. In this case, the set
approach was still slower than the bit approach, and the communication was larger, although it should be
significantly smaller theoretically. For t = 20, the results were more or less the same. For t = 10, the
straightforward bit approach has taken 5 hours while the sparse approach only 3.5 hours. For some strange
reason, the sparse approach still reported more communication. At the same time, we also could not win
in rounds since the bit approach takes clearly less rounds, even theoretically. In future, we are going to
make the local computation of Sharemind more efficient, so that it indeed would make sense to parallelize
rounds and decrease communication without losing in overall speed.

We have also tried whether Diffset gives advantage for dense matrices. We have taken the Chess dataset,
which is one of the densest available at [1]. This is still far from the density that should be achieved to make
sparse representation possible at all for Diffset, and the algorithm had to be started entirely on bit matrices,
but we hoped that some sparse columns will emerge on further iterations, since Diffset makes the sizes of
columns smaller. This time we used the same values of t as in our previous results in [9], as in Diffset the
columns represent the difference between the column size and its prefix size, which may be small even for
large t. The sparse columns indeed emerge, but for larger t they make the sparse approach only slower, so
possibly there are not so many of them. So far we have not achieved the situation where Diffset would be
faster using sparse representation.

The database Mushroom has been reported in [52] to be even worse with Diffset that with Eclat, and
hence we tested it with Eclat only. Although all the columns are dense in the beginning, some of them may
become sparse on further iterations. However, we see that they are still not sparse enough to make the
sparse approach more efficient.
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Database t
Eclat without sparsity Eclat with sparsity

Time Comm Time Comm

Retail 5500 30 13.5 min 2.4 GB 15.5 min 4.1 GB
Retail 5500 25 22 min 4.1 GB 27 min 7.2 GB
Retail 5500 20 45 min 7.8 GB 46 min 13.2 GB
Retail 5500 15 1 h 40 min 17.8 GB 1 h 25min 27.1 GB
Retail 5500 10 5 h 53.3 GB 3.5h 70.9 GB

Database t
Eclat without sparsity Eclat with sparsity

Time Comm Time Comm

Mushroom 2400 4 min 0.6 GB 5 min 15 s 1.2 GB
Mushroom 2200 5 min 30 s 0.8 GB 7 min 20 s 1.6 GB
Mushroom 2000 7 min 20 s 1.3 GB 12 min 2.6 GB
Mushroom 1800 24 min 2.7 GB 29 min 5.3 GB
Mushroom 1600 3 h 11 min 9.8 GB 3 h 33 min 19.3 GB
Mushroom 1400 3 h 40 min 11.1 GB 4 h 05 min 21.7 GB

Database t
Diffset without sparsity Diffset with sparsity

Time Comm Time Comm

Chess 2600 5 min 0.6 GB 7 min 1.4 GB
Chess 2400 31 min 1.9 GB 37 min 4.6 GB
Chess 2200 3 h 40 min 5.3 GB 4 h 19.2 GB

Table 2.6: Performance of bit matrix approach vs sparse matrix approach

In addition, we have noticed that the initial order of columns matters, as it defines the intersections of
Eclat and Diffset algorithms. In general, it is better to put sparse columns in front of bit columns, as it
reduces the number of situations where a set column should be converted back to a bit column. Nevertheless,
this is more difficult to trace on further iterations.

The results are shown in Tab. 2.6.
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preserving data analysis made easy. In K. Selçuk Candan, Yi Chen, Richard T. Snodgrass, Luis
Gravano, and Ariel Fuxman, editors, Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012, pages 349–360. ACM,
2012.

[45] Roger B. Myerson. Optimal auction design. Mathematics of Operations Research, 6(1):58–73, 1981.

21

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.iospress.nl/book/applications-of-secure-multiparty-computation/
http://www.iospress.nl/book/applications-of-secure-multiparty-computation/
http://eprint.iacr.org/
http://service-technology.org/publications/lohmann_2008_bpm/
http://service-technology.org/publications/lohmann_2008_bpm/


UaESMC Deliverable D5.2.3 Scientific Progress Analysis and Recommendations

[46] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[47] Noam Nisan. Introduction to mechanism design (for computer scientists). In Noam Nisan, Tim Rough-
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