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Executive Summary:
Algorithms for large-scale SMC problems

This document summarizes deliverable D4.2.2 of project FP7-284731 (UaESMC), a Specific Targeted Re-
search Project supported by the 7th Framework Programme of the EC within the FET-Open (Future and
Emerging Technologies) scheme. Full information on this project, including the contents of this deliverable,
is available online at http://www.usable-security.eu.

The report presents algorithms developed in workpackage WP4.2 and contains an overview of our research
results and an appendix. The overview presents the application scenarios and the existing state of the art
and summarizes the algorithms developed in the work package. The appendix consists of several papers and
technical reports, each one presenting the technical details of the implemented solutions.

In this deliverable, we report of the following results:

• Implementation and evaluation of differential privacy methods on top of the Sharemind SMC frame-
work. These methods allow us to check that the results of statistical analysis do not contain sensitive
information traceable back to particular individuals.

• An algorithm to find the minimum spanning tree of a graph in a privacy-preserving manner

• A string matching algorithm, to find whether a given pattern string is contained in a larger text in a
privacy-preserving manner.

• An algorithm to compute shortest distances in sparse graphs, where the lengths of the edges, as well
as the structure of the graph itself, are private.

• A privacy preserving algorithm for Frequent Itemset Mining (FIM), which , given a collection of sets,
finds the subsets of elements that are present in sufficiently many of these sets.

• Privacy preserving algorithms for Business Process Engineering, which focus on inferring (and checking
correctness of) the possible behavior of collaborating (but competitive) enterprises.
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Chapter 1

Introduction

This report gives a review of the algorithms developed during the third year of the UaESMC project. We
have investigated several different problems, which required developing of new algorithms, experimenting
the different existing algorithms to select the ones suitable for SMC, and driving the development of new
SMC techniques described in [3, 5, 25]. Our investigations have been mainly motivated by the example
problems selected during the first year [2] and the feedback received by the community and reviewers during
the first two years of the project

During the first two years of the project we worked on statistical analysis of structured data [5]. We
implemented several analysis preserving “computational privacy”: data that must be kept private and there
is no single entity that is allowed to see the entire dataset on which the analysis is run. In the last year
we investigated another privacy issue: “output privacy”. Or goal is to guarantee that the analysis results
do not contain sensitive information traceable back to particular individuals. To achieve output privacy,
we implemented several differential privacy methods on top of the Sharemind SMC framework. We have
implemented a number of statistical functions in this framework, and compared their performance with and
without DP mechanisms. Our results show that the extra overhead of implementing DP mechanisms on top
of SMC is not prohibitive. Our results are reported in Chapter 2.

In Chapter 3 we describe a method to find the minimum spanning tree of a graph in a privacy-preserving
manner. Our proposal makes use of the protocols for concurrent accesses to an array, according to many
private indices, that has been described in D2.2.3 [25].

In Chapter 4, we explore algorithms designed for parallel computers in the PRAM model (parallel
random-access machine) to build an efficient SMC protocol for privacy-preserving string matching: find
whether a private pattern string is contained in a larger and private text.

In Chapter 5 we present an algorithm to compute shortest distances in sparse graphs, where the lengths
of the edges, as well as the structure of the graph itself, are private. We make use of the protocol for private
lookup that has been described in deliverable D2.2.2 [5, Chapter 4], which, while having linear overhead,
pushed almost all complex operations into preprocessing, such that the online communication complexity is
constant.

Frequent Itemset Mining (FIM) is a well-known data mining task which consists in, given a collection
of sets (transactions), finding the subsets of elements (items) that are present in sufficiently many of these
sets. In Chapter 6 we present a privacy preserving algorithm for FIM.

A business process is a collection of structured activities and events that allows an enterprise to achieve
a business goal. These processes often involve the structuring of activities of several organizations. This is
the case when several potentially competitive enterprises can form a temporary alliance in order to achieve
temporary common goals. In Chapter 7 we present privacy preserving techniques for Business Process
Engineering that permit the participants to infer the behavior of these collaborations and to check their
correctness while keeping secret the participant business processes.

The Appendix is composed of several papers and technical reports that present the technical details of
the implemented solutions.
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Chapter 2

Combining SMC and Differential Privacy

2.1 Introduction

Many organizations maintain registries that contain private data on the same individuals. Important insights
might be gained by these organizations, or by the society, if the data in these registries could be combined
and analyzed. The execution of such combination and analysis brings several kinds of privacy problems
with it. One of them is computational privacy — one must perform computations on data that must be
kept private and there is no single entity that is allowed to see the entire dataset on which the analysis is
run. Another issue is output privacy — it is not a priori clear whether the analysis results contain sensitive
information traceable back to particular individuals.

Secure Multiparty Computation (SMC) [46, 18] is a possible method for ensuring the computational
privacy of a study. To achieve output privacy, the analysis mechanism itself must be designed with privacy
in mind [32]. A commonly targeted privacy property is differential privacy (DP) [15, 33], which has both
well-understood properties [23] and supports simple arguments, due to its composability.

The main methods of making statistical analysis differentially private are the Laplace and exponential
mechanisms, which require the computed function to be sufficiently smooth [15]. For many statistical
functions, other mechanisms may provide better accuracy for the same level of privacy. We have chosen the
sample-and-aggregate method [35], smoothening the function, such that less noise has to be added in order
to obtain the same level of privacy.

We report on the experience that we have obtained with the implementations of GUPT’s sample-and-
aggregate method [33] and the provenance for PDP method [16] on top of the Sharemind SMC frame-
work [8, 9]. We have implemented a number of statistical functions in this framework, and compared their
performance with and without DP mechanisms. Our results show that the extra overhead of implementing
DP mechanisms on top of SMC is not prohibitive.

2.2 The Sample-and-Aggregate Mechanism

Let us have a dataset T that can be interpreted as the result of |T | times sampling a probability distribution
D over Records (different samples are independent of each other). By processing T , we want to learn some
statistical characteristic f(D) — a vector of values — of the distribution D. We have two conflicting goals
— we want to learn this characteristic as precisely as possible, but at the same time we want our processing
to be ε-differentially private.

A robust method for differentially privately computing the function f is the Sample-and-Aggregate
mechanism proposed and investigated by Nissim et al. [35] and Smith [39], and further refined in the GUPT
framework [33]. The basic mechanism is given in Alg. 1. Beside the dataset T and the privacy parameter
ε, Alg. 1 receives as an input a subroutine for computing the function f (without privacy considerations).
This subroutine is called by Alg. 1 ` times in a black-box manner.
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Data: Dataset T , length of the dataset n, number of blocks `, privacy parameter ε, clipping range
[left, right]

1 Randomly partition T into ` disjoint subsets T1, . . . , T` of (almost) equal size
for i ∈ {1, . . . , `} do

2 Oi ← output of the black box on dataset Ti
3 if Oi < left then Oi ← left
4 if Oi > right then Oi ← right

end

5 Return 1
`

∑`
i=1Oi + Laplace

(
right−left

`·ε

)

Algorithm 1: The Sample-and-Aggregate algorithm [33]

We have implemented Alg. 1 on Sharemind. In privacy-preserving statistics applications, before apply-
ing an aggregating function, the dataset is usually filtered by some predicate [6, Sec 3]. In the secret-shared
setting, we cannot just create a new dataset that contains only the required rows because it would leak
the number of rows that matched the predicate. Instead, we must use a mask vector, which contains for
each row a boolean that specifies whether this row matched the predicate (and therefore should be used in
aggregation) or not. Therefore, all aggregating functions (including the non-differentially private ones used
as black boxes in the Sample-and-Aggregate algorithm) receive this mask vector in addition to the dataset
and must aggregate only the subset of the dataset denoted by the mask vector.

Also, we needed to replace the if statements with oblivious choices and perform the ` invocations of the
black box in parallel (to get decent performance on Sharemind). Essentially, we needed for each statistical
function f that we want to compute, a black box that computes f on any number of datasets (each filtered
by a mask vector) in parallel. It is not difficult to implement such black boxes on Sharemind and we have
done it for the linear correlation coefficient as an example. For a few other aggregation functions (count,
sum, average, median), we have used modified (not fully black-box) algorithms to get better accuracy for
the same privacy level.

2.3 Privacy Budgets

When performing statistical analysis, we usually need to make more than one query. We need to guarantee
that all performed queries together satisfy a certain privacy property. If several queries are made where
the ith query is εi-differentially private then the composition of the queries is (

∑
εi)-differentially private.

We can define a (global) privacy budget B and require
∑
εi ≤ B. Thus every query consumes a part of

the privacy budget and when a query has a higher ε than the amount of budget remaining then this query
cannot be executed or the accuracy will be reduced.

A global privacy budget has the disadvantage that a query reduces the budget for the whole database
even if only a small part of the records participate in the query. To improve this, we can use Personalized
Differential Privacy [16]. Here a query can provide a different level of privacy for each record.

We can consider two different methods for enforcing Personalized Differential Privacy. In the simpler
case, this means that instead of the global privacy budget, each row in the database has a separate privacy
budget. When an ε-differentially private query is made, then only the rows participating in the query have
their budgets reduced (by ε). We call such budgets in-place budgets because the budget is stored in the
same place (row) as the data to which it applies.

In the more complicated case, each row in the database has a provenance, each provenance (not each row)
has a privacy budget, and there can be several rows with the same provenance. Thus if an ε-differentially
private query uses r rows with some provenance p then the budget of this provenance p is reduced by rε. We
call such budgets provenance budgets because they are stored in a separate table that maps each provenance
to its budget. The actual data is accompanied only by the provenance identifier, not the actual budget. We
need to use a join operation to connect the values to the budgets.
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2.4 Overhead of Differential Privacy

We have implemented queries for all three kinds of privacy budgets described in Sec. 2.3 and compared their
performance to the non-differentially private versions of the queries. The implementation uses many primi-
tive operations on secret-shared data. The most important operations (the ones taking most of the running
time and communication) for us are integer comparisons, followed by equality checks and multiplications.
For smaller data sizes, also floating-point operations are important.

With global budgets, the ratio of the running times of the differentially private query and the non-
differentially private one approaches 1 as the data size approaches infinity. Thus the overhead of differential
privacy is negligible for large data sizes. For some functions (e.g. linear correlation coefficient), the number
of floating-point operations increases from O(1) to O(`) (where the parameter ` is usually around

√
n, where

n is the data size). For small n, this O(`) overhead can be significant because floating-point operations on
secret-shared data can be several orders of magnitude slower than integer operations.

When comparing the global-budget version of differential privacy with in-place budgets, the extra over-
head depends mostly on n, not on the aggregating function. This is because we use the same ε-differentially
private aggregating functions in both cases but in the latter case we also need to check which rows have
enough budget and to reduce the budgets. The overhead here is n comparisons (and n multiplications and
n boolean operations, which are much cheaper than comparisons).

Similarly, the extra overhead of the provenance-budgets version of differential privacy compared to the
in-place-budgets version depends on data size and not on the aggregating function. Here the data values
and the budgets are stored in different tables. Let nv and nb be the number of rows in the value table and
the budget table, respectively, and n = nv +nb. Then our algorithm uses O(n log n) comparisons for sorting
(using quicksort) the two tables together and at most a total of n log n equality checks for another expensive
subroutine. The rest of the algorithm is linear-time.

If we need to make several queries in a row on the same value table and the same mask vector (but with
possibly different aggregation functions) then we can reuse the results of the O(n log n) part of the algorithm
and need to repeat only the linear-time part for each query. If the next query uses the same value table but
a different mask vector then we need to redo the n log n equality checks. Sorting (the most time-consuming
part of our algorithm) needs to be redone only when the next query uses a different value table.

2.5 Conclusion

We have implemented efficient algorithms for performing differentially private statistical analyses on secret-
shared data on the SMC platform Sharemind. The current implementation supports the aggregation
functions count, sum, arithmetic average, median, and linear correlation coefficent but it can easily be
extended to other functions using the Sample-and-Aggregate mechanism. We have implemented three
different kinds of budgets for differential privacy and compared their performance. We can conclude that
non-trivial queries using various forms of differential privacy can be performed on an SMC platform based
on secret sharing, and the performance is good enough to be usable in practice.
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Chapter 3

Privacy-preserving Computation of
Minimum Spanning Trees

3.1 Oblivious parallel array access

In deliverable D2.2.3 [25] we describe efficient protocols for reading from an array, or writing to an array
in parallel, according to many private indices. In this chapter, we show how these protocols can be used to
solve a concrete algorithmic task — finding the minimum spanning tree of a graph — in a privacy-preserving
manner.

In D2.2.3, we present the following protocols, taking as input, and producing as output the shares of the
following values and vectors:

• obliviousRead, taking as input a vector of values J~vK of length m, and a vector of indices J~zK of length
n, and returning a shared vector of length n, consisting of the elements of J~vK read from positions
given in J~zK;

• obliviousWrite, taking as input an existing array J~wK of length m, and vectors of values J~vK, of indices
J~jK, and of priorities J~pK, all of length n, and returning an updated array J~w′K, where the positions
given in J~jK are updated with the corresponding values in J~vK, and multiple attempts of updating the
same position in J~wK are resolved by consulting the priorities in J~pK (only the writing with the highest
priority will go through).

Both obliviousRead and obliviousWrite have communication complexity O((m + n) log(m + n)) and round
complexity O(log(m + n)), hence they have small overheads (if n = Θ(m), then the overhead of oblivious
array access is only logarithmic in the length of the array). Moreover, both obliviousRead and obliviousWrite
are built as the compositions of following protocols:

• obliviousRead(m,n, J~vK, J~zK) = performRead(m,n, J~vK, prepareRead(m,n, J~zK)), where the output of the
algorithm prepareRead is an oblivious shuffle for vectors of length m + n. For the purposes of this
chapter, we can consider the output of prepareRead as a value with no further structure.

• obliviousWrite(m,n, J~wK, J~vK, J~jK, J~pK) = performWrite(m,n, J~wK, J~vK, prepareWrite(m,n, J~jK, J~pK)), where
the output of prepareWrite is a pair of oblivious shuffles for vectors of length m + n + 1. Again, the
structure of the output of prepareWrite does not matter for this chapter.

What matters, are the complexities of these subprotocols. The asymptotic complexities of prepareRead
and prepareWrite are the same as for obliviousRead and obliviousWrite — O((m + n) log(m + n)) bits of
communication in O(log(m+n)) rounds. But the asymptotic complexities of performRead and performWrite
are only O(m+ n) bits of communication in O(1) rounds. Hence we try to structure the applications using
oblivious parallel array access so, that the amount of calls to prepareRead and prepareWrite is minimized.
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3.2 Parallel algorithms for minimum spanning trees

The textbook algorithms for minimum spanning tree (MST) by Kruskal and Prim [11] are inherently se-
quential, processing the edges or vertices of the graph G = (V,E, ω), where ω : E → R gives the weights
of the edges, one at a time. Hence they are unsuitable for implementation on SMC frameworks based on
secret sharing. A lesser-known MST algorithm by Bor̊uvka [34] works as follows:

1. The algorithm is iterative. At the beginning of each iteration, V is partitioned into sets V1, . . . , Vk and
for each Vi, the MST has already been found.

2. During an iteration, for each Vi we find the edge ei that has the least weight among the edges that
connect a vertex in Vi with a vertex in V \Vi.

3. Add all such edges ei to the MST. Join the parts Vi that are now connected with an edge.

In the beginning, each vertex forms a separate part of V . In the end, all vertices are in a single part. During
each iteration, each part is joined with at least one other part, hence the number of parts in the partition
will decrease at least by 50%. Hence the number of iterations is at most log2 |V |. The edges ei can be found
in parallel by considering all edges, and trying to assign some e ∈ E with ends in Vj1 and Vj2 to be ej1 and
ej2 with priority −ω(e).

The joining of the parts in step 3 is the hardest to parallelize. A method for this has been proposed by
Awerbuch and Shiloach [1], who also slightly adjust the rest of the algorithm. They introduce a union-find
data structure, which we can think of as a second set of directed edges F (independent of E), where the
out-degree of each vertex is 1. Alternatively, we can think of F as a mapping V → V that maps the source
vertex of an F -edge to its target vertex. The graph (V, F ) may not contain cycles, except for self-loops,
where F (v) = v for some v ∈ V . Hence each connected component of F is a rooted tree that additionally has
a self-loop at its root. The connected components of F define the partitioning of V for Bor̊uvka’s algorithm.

A connected component of (V, F ) is called a star, if its height as a tree is at most 1. Hence an isolated
vertex is a star, and a component consisting of a root and one or more leaves is also a star. For each vertex
v in a star, F (v) is the root of that component. It is easy to check (in parallel), whether a vertex belongs to
a star or not: if F (v) 6= F (F (v)), then neither v nor F (F (v)) are vertices of stars. Also, if afterwards F (v)
is not in a star, then v is neither.

In Awerbuch’s and Shiloach’s adaptation, we consider only such parts Vi during the second step of the
algorithm, that are stars according to F . The stars are easy to join with other parts: if v is a vertex in
a star that must be joined with the part containing w, then we just make F (F (v)) equal to F (w). Such
update to F may create cycles of length 2, if two stars were joined with each other, but these are easy to
detect and break.

Another important step in Awerbuch’s and Shiloach’s adaptation is the shortening of F -paths. At the
end of each iteration, we update F (v) for all v ∈ V , making it equal to F (F (v)). This ensures that a non-star
will (eventually) become a star again and will be considered in the second step of Bor̊uvka’s algorithm.

These modifications may increase the number of iterations the MST algorithm makes. However, Awer-
buch and Shiloach show that it will not grow beyond log3/2 |V |.

3.3 Adaption to secret-sharing based SMC

Awerbuch’s and Shiloach’s PRAM adaption of Bor̊uvka’s algorithm can be rather straightforwardly adapted
to run on top of a secret-sharing SMC system, e.g. Sharemind. The pseudo-code of our implementation is
given in Alg. 3, with the check of a vertex belonging to a star brought out separately in Alg. 2.

While checking for the membership in stars, we have to compare F (v) to F (F (v)). Let G(·) = F (F (·)).
To find G, we have to read from the vector F according to the indices given in F . The actual check takes
place in line 3, its results are stored in J~bK. In lines 4–6 we assign false to bG(v), where bv is false. We cannot

10
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Data: Private vector J~F K of length n, where 1 ≤ Fi ≤ n
Result: Private predicate J−→StK, indicating which elements of {1, . . . , n} belong to stars according to ~F

1 JσK← prepareRead(J~F K, n)

2 J~GK← performRead(J~F K, JσK)
3 foreach i ∈ {1, . . . , n} do JbiK← JFiK ?

= JGiK;
4 Jbn+1K← false
5 foreach i ∈ {1, . . . , n} do JaiK← JbiK ? (n+ 1) : JGiK ;

6 J~bK := obliviousWrite(J~aK,−−→false,~1, J~bK)
7 J~pK← performRead(J~bK, JσK) // Ignore bn+1

8 foreach i ∈ {1, . . . , n} do JSt iK← JbiK ∧ JpiK;
9 return J−→StK

Algorithm 2: Privacy-preserving checking for stars

choose, based on bv, whether we do the assignment or not, but we can choose the target element of the
assignment. Hence, if bv = true, then we assign to b|V |+1, which we ignore in the end.

In lines 7–8 we check whether bF (v) is false. If it is, then the end result Stv is also false. We have to read
from b according to the indices in F . Hence starCheck contains two private reads according to the indices
F . These two reads can share the prepareRead–phase, thereby lowering the complexity of starCheck.

The MST protocol (Alg. 3) starts by initializing J~F K, the MST J~T K, and J ~WK, where Wi is used to store
i if the i-th edge belongs to the MST. In one iteration, we retrieve the end-points of all edges and check
whether they belong to the same part (line 13). If not, and if one of the endpoints of e belongs to a star,
then we try to use e as the least-weight edge going out of this star (lines 14–17). The updated ~W is used to
update the result ~T in line 18. Lines 19–26 combine the breaking of F -cycles of length 2, and the shortening
of F -paths. It turns out that in order to find the value of F (v) after these two operations, it is sufficient
to know, which of v, F (v), F (F (v)) and F (F (F (v))) are equal to each other beforehand. In Alg. 3 we find
G(·) = F (F (·)) similarly to Alg. 2, and H(·) = F (F (F (·))) = G(F (·)). We then perform the necessary
comparisons and compute the new value of F (v). The case-construction in line 26 is implemented as a
composition of oblivious choices.

The asymptotic complexity of our MST protocol is O(|E| log2 |V |) communication in O(log2 |V |) rounds.
More details can be found in [28] (attached to this deliverable).
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Data: Number of vertices n, number of edges m
Data: Private vector J ~EK of length 2m (endpoints of edges, i-th edge is (Ei, Ei+m))
Data: Private vector J~ωK of length m (edge weights)
Result: Private boolean vector J~T K of length m, indicating which edge belongs to the MST

1 foreach i ∈ {1, . . . , 2m} do
2 Jω′iK← −Jωi mod mK
3 JE′iK← JE(i+m) mod 2mK

end
4 foreach i ∈ {1, . . . , n+ 1} do
5 JFiK← i
6 JWiK← (m+ 1)

end
7 foreach i ∈ {1, . . . ,m+ 1} do JTiK← false;

8 JσeK← prepareRead(J ~EK, n)
9 for iteration number := 1 to blog3/2 nc do

10 J−→StK← starCheck(J~F K)
11 J~F eK← performRead(J~F K, JσeK) // Ignore Fn+1

12 J−→SteK← performRead(J−→StK, JσeK)
13 foreach i ∈ {1, . . . ,m} do JdiK← JF e

i K
?
= JF e

i+mK ;
14 foreach i ∈ {1, . . . , 2m} do JaiK← JSte

i K ∧ ¬Jdi mod mK ? JF e
i K : (n+ 1) ;

15 (JσvK, JτvK)← prepareWrite(J~aK, J~ω′K, n+ 1)

16 J~F K := performWrite(JσvK, JτvK, J ~E′K, J~F K)
17 J ~WK := performWrite(JσvK, JτvK, (i mod m)2m

i=1, J ~WK)
18 J~T K := obliviousWrite(J ~WK,−−→true,~1, J~T K)
19 JσfK← prepareRead(J~F K, n+ 1)

20 J~GK← performRead(J~F K, JσfK)
21 J ~HK← performRead(J~GK, JσfK)
22 foreach i ∈ {1, . . . , n} do

23 Jc(1)
i K← i

?
= JGiK

24 Jc(2)
i K← i

?
< JFiK

25 Jc(3)
i K← JFiK ?

= JHiK ∧ JFiK
?
< JGiK

26 JFiK :=





i, if Jc(1)
i K ∧ Jc(2)

i K
JFiK, if Jc(1)

i K ∧ ¬Jc(2)
i K

JFiK, if ¬Jc(1)
i K ∧ Jc(3)

i K
JGiK if ¬Jc(1)

i K ∧ ¬Jc(3)
i K

end

end
27 return (JT1K, . . . , JTmK)

Algorithm 3: Privacy-preserving minimum spanning tree
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Chapter 4

Privacy-preserving String Matching in
Parallel

4.1 Introduction

String matching (or string searching) algorithms are an important class of string algorithms that aim to
find whether a given pattern string is contained in a larger text. In the public domain, there are many
well-known algorithms that solve string matching efficiently, such as the Knuth-Morris-Pratt algorithm [26].
However, our goal is to implement privacy-preserving string matching using secure multi-party computation
(SMC) so as to not reveal the contents of the input strings. Possible applications for privacy-preserving
string matching include spam e-mail filtering without revealing the e-mail contents to the mail server and
finding specific patterns in private genome data.

Many SMC protocols require exchanging information over the network to perform secure computations,
and for most state-of-the-art protocols, network communication is the bottleneck for performance. Overall,
the communication costs for an SMC protocol can be described with two parameters: round-complexity and
the amount of communication in each round. Round-complexity measures the number of communication
rounds the parties have to perform to complete the protocol, where each round of communication has data
dependencies with the previous, preventing these rounds to be performed in parallel.

Having a large round-complexity makes a protocol slower due to overhead introduced by network latency.
On the other hand, very large network messages are also slow to send since the network bandwidth is
bounded. In many situations, a trade-off between round complexity and the amount of communication
can be made to gain better overall performance, e.g by increasing round-complexity of the protocol, but
reducing the total amount of communication. For example, the authors of [13] show that an SMC protocol
with a lower round-complexity, but larger amount of communication is more effective in a high-latency
environment, but other methods are optimal when the network latency is smaller.

In this Chapter, we explore algorithms designed for parallel computers in the PRAM model (parallel
random-access machine) to build an efficient SMC protocol for privacy-preserving string matching. We
observe that the PRAM model has analogous criteria for optimizing algorithms as discussed above, mini-
mizing the time-complexity of the algorithm (analogous to round-complexity) as well as the total work done
in all parallel threads (analogous to the amount of communication). Thus, PRAM algorithms are a natural
starting point for creating efficient SMC protocols that optimize these two parameters.

Our protocols are built on the Sharemind SMC framework using the additive3pp protection domain,
which provides a number of arithmetic black-box primitive protocols in a 3-party honest-majority model
with semi-honest adversaries [7]. Most operations in additive3pp allow for SIMD-like execution, making
the transition from PRAM relatively straightforward. As PRAM algorithms require concurrent memory
access primitives, we make use of the efficient parallel private array access protocols introduced in [28].
Private array accesses are essential, since otherwise, the algorithms would leak some information about
the structure of the input strings. We present a string-matching protocol with optimal trade-off between

13
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round-complexity and amount of communication, which greatly outperforms a brute-force constant-round
protocol for already relatively small input sizes in a low-latency environment.

4.2 PRAM Approach to String Matching

We use capital letters A,B to denote strings and use X[i] to refer to the character in string X at position i
(starting from 0). Let T be a string of length n and P a string of length m, such that m ≤ n. The string
matching problem is defined as finding all positions in the text T that match with the pattern. That is, we
need to calculate the match array ~M of length n−m+ 1, such that Mi = 1 if and only if P matches T at
position i. Our goal is to construct a privacy-preserving string matching protocol that hides both the text
and the pattern. Note however that we do not hide the length of the strings.

To implement a privacy-preserving string matching algorithm, one could try to convert for example
the Knuth-Morris-Pratt algorithm directly into an SMC protocol. However, the round-complexity of the
resulting protocol would be linear in the input sizes Θ(m + n), which makes it impractical even for small
input sizes. Also, there is no natural way to parallelize the algorithm. A second brute-force approach
would be to build a protocol which checks for all locations of the input text whether they match the given
pattern string. All locations can be tested in parallel with a constant number of rounds by using an equality
protocol. However, the number of comparisons that need to be made is O(m · (n −m)), which means the
total amount of communication required grows quite fast. To build a more efficient protocol, we instead use
a PRAM string-matching algorithm described in [24].

The witness array. The used algorithm first pre-processes the pattern string and calculates the witness
array for the pattern. The witness array is then used to check for matching locations in the text more
efficiently. Specifically, given the witness array it is very simple to disqualify candidate positions in the text
that definitely do not match the pattern. For a given pattern, the witness array need only be calculated
once. We assume the pattern to be non-periodic, that is it cannot be expressed in the form P = XkX ′,
where Xk is a concatenation of X with itself k times and X ′ is a prefix of X. The non-periodic case can
also be extended to handle periodic patterns.

For a non-periodic pattern P of length m, the witness array ~W consists of elements Wi for i ∈
{0, . . . ,

⌈
m
2

⌉
− 1}, such that P [Wi] 6= P [Wi + i]. That is, the element Wi indicates a position in P , such

that the character at that position differs from the character i positions forward. W0 is defined to be 0.
Since the witness array gives information about the structure of the pattern string, we need to compute it
in a privacy-preserving manner. In [38], we give a protocol for calculating the witness array from an input
pattern string under secret sharing.

The duel function. The fundamental building-block for the string matching algorithm is the duel func-
tion, which, given two indices i, j, disqualifies one as a candidate position in the text to match the pattern.
The duel function, presented as Alg. 4, uses the witness array to do this using only a few operations.

Data: Text T of length n, pattern P of length m such that m ≤ n, witness array ~W for P and
indices i, j such that j > i and j − i <

⌈
m
2

⌉

Result: One of i or j, eliminating the other as a candidate position for a match
k ←Wj−i
if T [k + j] = P [k] then

return j
else

return i
end

Algorithm 4: The duel function

14
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Applying the duel function in parallel. The idea of the string-matching algorithm is to divide the
input text into blocks of size

⌈
m
2

⌉
, where m is the length of the pattern. Then, a non-periodic pattern can

only match the text at most once in each block. In each block, we use the duel function to eliminate all but
one possibility of a matching position. Also, we can process each block separately in parallel. Then finally
we use the brute-force protocol based on the remaining candidate indices to find the actual match array.

To find the single candidate matching position in each block with the least number of operations, the
duel function is applied using a binary tree strategy as depicted on Fig. 4.1.

duel(i12, i34)

i34 = duel(i3, i4)

i4 = duel(7, 8)

87

i3 = duel(5, 6)

65

i12 = duel(i1, i2)

i2 = duel(3, 4)

43

i1 = duel(1, 2)

21

Figure 4.1: Applying binary tree strategy to eliminate all but one position in
⌈
m
2

⌉
= 8 size block

To process each level of the tree with a constant number of rounds, we present a protocol in [38] to apply
the duel function in parallel to a set of index pairs. We also present a brute-force string matching protocol
which only checks for matchings on a set of private input positions using the private array access primitives
from [28].

Applying accelerated cascading. The overall string matching protocol using the binary tree strategy
is optimal in the sense of operations made, however the number of rounds is logarithmic in the size of
the pattern. A faster protocol is obtained by using a doubly-logarithmic tree instead, which has height
log log k+ 1 for k leaves, but uses more operations. To still process each level of the doubly-logarithmic tree
in constant rounds, we additionally need a protocol applying the duel function to a set of indices in parallel
and returning a single potential matching candidate. This can be done by simply to applying duel to all
pairs of indices in the input set.

Finally, an optimal asymptotic trade-off between round-complexity and communication is achieved by
using a combination of both. First, the binary tree is used up to

⌈
log log log m

2

⌉
levels and then switching

to the doubly-logarithmic tree. The corresponding PRAM algorithm has time complexity O(log logm) and
work complexity O(n). This method of combining different parallel execution strategies is called accelerated
cascading, and as a general method, can be applied to any operation for which an algorithm exists that can
process each level of the execution tree in constant time.

Our experiments show, that the brute-force constant-round protocol is faster for smaller input sizes,
which is most likely due to the overhead of the private array access primitives used in the PRAM protocol.
However, for larger input sizes, the PRAM approach achieves much better performance.

4.3 Conclusion

The string matching protocol presented in [38] shows that the PRAM model offers useful insight into
designing more efficient SMC protocols. The accelerated cascading design principle allows to effectively
fine-tune the trade-off between round-complexity and total communication of the protocol for different
network environments. Using PRAM methods, we build an efficient SMC protocol for string matching
without revealing any information about the input strings. The performance of the protocol relies on the
existence of efficient private array access primitives from [28]. Similarly, many other classes of problems
for which an efficient PRAM algorithm exists can be solved in a privacy-preserving manner by building an
equivalent SMC protocol.
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Chapter 5

Privacy-preserving Finding of Shortest
Distances in Sparse Graphs

In deliverable D2.2.2 [5, Chapter 4], we reported on a protocol for private lookup, which, while having linear
overhead, pushed almost all complex operations into preprocessing, such that the online communication
complexity is constant [27] (the paper is attached to this deliverable). We have applied this technique to
compute shortest distances in sparse graphs, where the lengths of the edges, as well as the structure of the
graph itself, are private.

5.1 The private lookup protocol

Let us recall the construction of the protocol, we refer to [27] for more details. Let (Jv1K, . . . , JvnK) be a
vector of private values, where v1, . . . , vn are elements of some finite field F. We also interpret the indices
1, . . . , n as non-zero elements of F. The representation J·K of private values must be based on some kind
of secret sharing over the field F, such that the addition of two private values, and the multiplication of a
private value with a public value are free operations, i.e. they require no communication between different
computing parties. Let JjK, where j ∈ {1, . . . , n}, be the private index; we want to find JvjK.

There exists a polynomial f over F of degree at most n − 1, such that f(i) = vi for all i ∈ {1, . . . , n}.
Using Lagrange interpolation, the coefficients c0, . . . , cn−1 of this polynomial can be computed as certain
linear combinations of v1, . . . , vn. The multipliers in these linear combinations only depend on n and F.
Hence the computing parties can compute Jc0K, . . . , Jcn−1K using free operations only.

To find JvjK, the computing parties first somehow have to obtain JjK2, . . . , JjKn−1 from JjK. Afterwards,
they can compute JvjK =

∑n−1
i=0 JciKJjKi. If the representation J·K is based on Shamir’s secret sharing [37],

then the computation of this scalar product only costs as much (in communication) as the computation
of single multiplication of two private values [17]. In particular, the communication cost of computing the
scalar product does not depend on n.

To obtain JjK2, . . . , JjKn−1, the computing parties proceed in a roundabout manner. They generate JrK,
where r is a uniformly randomly chosen non-zero element of F. Together with JrK, they also generate JrK−1,
as described in [12]. They compute JrK2, . . . , JrKn−1 in a straightforward manner, using O(n) multiplications.
To compute the powers of JjK, they first compute a public value z ∈ F\{0} as a declassification of JjK · JrK−1.
It is safe to declassify this value, because r−1 is a uniformly randomly distributed element of F\{0} and
thus perfectly hides j. Afterwards, the parties can compute JjKi = zi · JrKi for i ∈ {2, . . . , n− 1}, using only
free operations.

To generate JrK and JrK−1, and to compute the powers of JrK, no knowledge of Jv1K, . . . , JvnK nor JjK is
necessary. Hence, these computations can be performed off-line, leaving only the computation of JjK · JrK−1,
its declassification, and the computation of the scalar product

∑n−1
i=0 JciKJjKi as non-free online computations.

The online computations require a constant amount of communication; it does not depend on n.
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5.2 Protocol for SSSD

Let G = (V,E) be a directed graph with s, t : E → V giving the source and target, and w : E → N giving the
length of each edge. Let v0 ∈ V be the vertex, the distance of which from other vertices we’re interested in.
Bellman-Ford (BF) algorithm for SSSD starts by defining d0[v] = 0, if v = v0, and d0[v] =∞ for v ∈ V \{v0}.
It will then compute di+1[v] = min(di[v],mine∈t−1(v) di[s(e)] + w(e)) for all v ∈ V and i ∈ {0, . . . , |V | − 2}.
The vector ~d|V |−1 is the result of the algorithm.

We have implemented the BF algorithm on top of the Sharemind platform, hiding the structure of the
graph, as well as the lengths of edges. In our implementation, the numbers n = |V | and m = |E| are public,
and so are the in-degrees of vertices (obviously, these could be hidden by using suitable paddings). In effect,
the mapping t in the definition of the graph is public, while the mappings s and w are private. During the
execution, we use private lookup to find di[s(e)]. This is the only array access operation, where the array
index is private. An advantage of the BF algorithm over Dijkstra’s algorithm is, that the former has no
array writing operations with private indices.

We have attempted to parallelize our privacy-preserving implementation of the BF algorithm. In general,
the SSSD algorithms do not parallelize well. In our case, the vectors J~d1K, . . . , J~d|V |−1K have to be computed

one after another. On the other hand, all elements of a given vector J~diK can be computed in parallel in a
constant number of rounds. Hence our implementation has O(n) rounds in the online phase.
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Chapter 6

Privacy-preserving Frequent Itemset
Mining Using Sparse Set Representations

Frequent Itemset Mining (FIM) is a well-known data mining task whose privacy-preserving version has also
been considered [4, 10, 30, 48, 40]. The task is, given a collection of sets (transactions), find the subsets
of elements (items) that are present in sufficiently many of these sets. After finding which items are more
likely to occur together, one may search for the reason for that co-occurrence, and whether the existence of
one item implies the existence of the other one (associative rule mining).

Traditionally, the sets themselves are called the transactions, and their elements are called items. This
comes from one possible use case, where the items are some goods sold in the supermarket, and each
transaction corresponds to the contents of one shopping cart that a client has bought.

6.1 Data Representation

In the standard setting, the input database is represented by a bit matrix, where the rows are characteristic
vectors of transactions over the universal set of items, where each column corresponds to a certain item. In
practice, this matrix is often very sparse and contains significantly more zeroes than ones. The previous
privacy-preserving FIM protocols have not tried to benefit from this sparsity. In a perfectly secure setting,
this is simply impossible, since a dense dataset has to be indistinguishable from a sparse dataset. If we
consider density as not very sensitive information, we may improve the efficiency by developing specific
algorithms that take sparsity into account. Developing such algorithms is the main contribution of this
work. Its full version can be found in [29], which is also included in Appendix E.

6.2 Notation

Throughout this paper, we use the following quantities:

• m is the number of rows in the data table (transactions);

• n is the number of columns in the data table (items); the same notation is used to denote the number
of columns on current iteration (itemsets);

• mj ≤ m is the number of non-zero entries in the j-th column;

• m′ ≥ mj(∀j) is the upper bound on the number of non-zero entries in each column;

• t is the threshold of being a frequent set;

• k is the size of the currently generated itemsets;

• k̂ is the maximal size of frequent itemsets that have to be generated.
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Some FIM-specific notation:

• σ(I) is the set of all transactions containing the itemset I (the support of I);

• ∆(I1, I2) := σ(I1) \ σ(I2) is the difference of the supports of I1 and I2.

The following more general shorthand operation notation will be used:

• protocol input length (if the input is a vector) n;

• number of bits of protocol input: k;

• secret shared value (additive or xor sharing) 〈[a]〉;

• additively shared value [[a]];

• xor shared value 〈〈a〉〉;

• i-th element of a vector a: ai and a[i];

• (i, j)-th element of a matrix A: (aij) and A[i, j];

• vector elements from i-th to j-th: x[i : j]

• vector concatenation: x‖y;

• [1]m =

m︷ ︸︸ ︷
[1, . . . , 1];

• zip of two (equal-length) vectors: x ./ y = [(xi, yi) | i← [1, . . . , |x|]].

• matrix columnwise multiplication: A ⊗ B. Namely, if A = (a1‖ . . . ‖anA) and B = (b1‖ . . . ‖bnB ),
then A⊗B = (c1,1, . . . , cnA,nB ) where ci,j [k] = ai[k] · bj [k];

• protocol composition:

– P1 + P2 execute P1 and P2 sequentially;

– n� P execute n instances of P in parallel;

6.3 Main Algorithms

There exist several variations for the standard FIM algorithms. In this section, we just give the intuition
about how these algorithms work, without introducing particular algorithm descriptions, as the actual
implementations may vary.

Apriori This algorithm sequentially constructs all the frequent itemsets of size 1, then of size 2, until
all the frequent sets of size k̂. Any infrequent itemsets are immediately discarded. The frequent sets of
size k are constructed only for those sets whose all k − 1 subsets have been frequent. The straightforward
implementation of this algorithm does not keep in memory the lists of transactions that contain sets of
size other than 1, and on each iteration, the sets are constructed from the initial database. The way in
which these sets are constructed depends on the particular algorithm instance. One possible recursive
implementation of Apriori is given in Alg. 5.

19



UaESMC Deliverable D4.2.2 Algorithms for large-scale SMC problems

Data: M all the frequent sets of size k − 1
Result: Frequent itemsets of size at least k

1 F ← ∅ ;
2 foreach Xi ∈M do
3 foreach Xj ∈M , j > i do
4 R← Xi ∪Xj ;
5 if |R| ≥ t then
6 F ← F ∪ {R} ;

end

end

end
7 if F 6= ∅ then
8 F ′ ← Apriori(F ) ;

end
9 return F ∪ F ′ ;

Algorithm 5: Apriori

Data: [P ] all the frequent sets of size k − 1 with a prefix P
Result: Frequent itemsets of size at least k with the prefix P

1 foreach Xi ∈ [P ] do
2 Fi ← ∅ ;
3 foreach Xj ∈ [P ], j > i do
4 R = Xi ∪Xj ;
5 if |R| ≥ t then
6 Fi = Fi ∪ {R} ;

end

end
7 if Fi 6= ∅ then
8 F ′i = Eclat(Fi) ;

end

end
9 return

⋃
i F
′
i ;

Algorithm 6: Eclat
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Data: [P ] all the frequent sets of size k − 1 with a prefix P
Result: Frequent itemsets of size at least k with the prefix P

1 foreach Xi ∈ [P ] do
2 Fi ← ∅ ;
3 foreach Xj ∈ [P ], j > i do
4 Xij ← Xi ∪Xj ;
5 ∆(Xi, Xij)← ∆(P,Xj) \∆(P,Xi) ;
6 |σ(Xij)| = |σ(Xi)| − |∆(Xi, Xij)| ;
7 if |σ(Xij)| ≥ t then
8 Fi = Fi ∪ {Xij} ;

end

end
9 if Fi 6= ∅ then

10 F ′i = Diffset(Fi) ;

end

end
11 return

⋃
i F
′
i ;

Algorithm 7: Diffset

Eclat Similarly to Apriori, this algorithm constructs sets of size k from sets of size k − 1. The main
difference from Apriori is that this algorithm uses depth-first search, considering on one iteration not all the
possible subsets of size k, but rather constrains it to the sets with a common prefix P of length k− 1 (these
are all sets of the form P ∪ {x} for x /∈ P ). Let the support of P be denoted σ(P ). For each item x, all
possible frequent sets with prefix P ′ := P ∪{x} can be constructed as σ(P ∪ {x})∩ σ(P ∪ {y}) for all other
sets (P ∪ {y}), y 6= x. The prefix P ′ is then processed recursively. The description is given in Alg. 6.

Diffset If the matrix columns are dense, then instead of keeping a set of transactions that contain the
given itemset, one could try to keep a set of transactions that do not contain the given itemset. Another
FIM algorithm Diffset [47] is similar to Eclat, but instead of keeping the set of transactions in each itemset,
it keeps just the sizes of supports of sets of size k − 1, and the differences between a set of size k and its
subsets of size k − 1. In this way, even if the initial matrix is not dense, the algorithm may still give better
efficiency on later iterations.

Let the itemsets P ∪ {x} and P ∪ {y}, be frequent. The question is whether the itemset P ∪ {x} ∪
{y} is frequent. Let ∆(P ∪ {x}, P ∪ {x} ∪ {y}) be the difference between the supports σ(P ∪ {x}) and
σ(P ∪ {x} ∪ {y}). We have σ(P ∪ {x} ∪ {y}) = σ(P ∪ {x}) \∆(P ∪ {x}, P ∪ {x} ∪ {y}), so the size of the
support is |σ(P ∪ {x} ∪ {y})| = |σ(P ∪ {x})|− |∆(P ∪ {x}, P ∪ {x} ∪ {y})|, and ∆(P ∪ {x}, P ∪ {x} ∪ {y})
can be computed as ∆(P, P ∪ {y}) \∆(P, P ∪ {x}). The description is given in Alg. 7.

The main step of presented privacy-preserving FIM algorithms We now make a small summary
of the privacy-preserving FIM algorithms proposed above. A similar property of these algorithms is that,
on each step of each iteration, all they compute a frequent itemset of size k, based on the frequent itemsets
of size k− 1. The basis of finding a k-set from k− 1 subsets is either set intersection (for Apriori and Eclat),
or set difference (for Diffset).

A straightforward approach to find a set intersection is to represent each set as a characteristic bit vector
of the item universe, and then find the pointwise product of these vectors. This method is used in the bit
matrix representation.

Although all matrix elements are bits, at some moment the column sum has to be computed. In this
way, in [4] the matrix elements are initially all at least logm-bit, since the maximal value that the sum may
take is m. For very sparse sets, such an encoding may be excessive due to large amount of zeroes that will
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Algorithm Call Description Returned Value

Csort(〈[x]〉 ./ 〈[b]〉) counting sort 〈[y]〉 where y is x sorted by bit keys b

Rsort(〈[x]〉) radix sort 〈[y]〉 where y is sorted x

Qsort(〈[x]〉) quick sort 〈[y]〉 where y is sorted x

CountOnes(〈〈x〉〉) count ones in a bit vector 〈〈c〉〉 s.t c =
∑n

i=1 xi, xi ∈ Z2

CharVec(〈〈a〉〉, k) characteristic vector 2k-bit vector 〈〈b〉〉 s.t bi = 1 iff i = a

MultByBit(〈〈a〉〉, 〈〈b〉〉) multiply by bit 〈〈0〉〉 if b == 0 and 〈〈a〉〉 otherwise

Table 6.1: Building block operations

not be needed anyway. In [4], finding an intersection of two itemsets i and j and checking its cardinality is
implemented as:

1. multiply pointwise two logm-bit vectors of length m;

2. sum the obtained m products up;

3. compare the obtained logm-bit number with a logm-bit number t.

Another possibility to do the same thing is to keep all the bits in Z2, doing the share conversion after the
multiplication. This approach can be useful if the share conversion protocol is implemented more efficiently
than multiplication.

6.4 Set Based Approach

Let each column of the matrix contain at most m′ entries for m′ ≤ m. We will now use an m′ × n matrix
for data table representation. Each column will now be not the characteristic bit vector, but will contain
the indices of transactions straightforwardly. Encoding a number from [1, . . . ,m] requires logm bits. If the
table contains at most nm′ nonzero entries, then nm′ · logm bits are sufficient to encode it. If the size of
some column is mj < m′, then some m′ −mj of its entries are set to 0. The order of values in a column
does not matter.

If the columns are sparse, we get m′ � m, and hence the set representation allows to save a lot of
memory space. We also need to develop efficient algorithms for set intersection and difference.

6.4.1 Building Block Algorithms

Our set operation algorithms in turn use some smaller more general subalgorithms, some of which have
already been implemented for Sharemind before, and some had to be implemented as a part of this work.
The description of these algorithms is given in Tab. 6.1, and their complexity (expressed in terms of existing
Sharemind protocols) in Tab. 6.2. The details of implementations of some of these algorithms (that are part
of this work) and references to implementations of some other algorithms (that are not a part of this work)
can be found in [29].

6.4.2 Set intersection of k-bit elements

Let a and b be the two arrays that represent the sets whose intersection we are going to find. Let |a| = n1,
|b| = n2, n = n1 + n2. The computation of c = a ∩ b is given in Alg. 8.

First, the algorithm sorts the straightforward concatenation 〈[a]〉‖〈[b]〉 by value, so that if an element
occurs in both sets, then these two elements appear together in the resulting sorted array. Hence if there
are two sequential instances of the same element di−1 and di in d, then we chose si = di. Everywhere else
si = 0. In this way, we keep exactly those elements that are present in both a and b. We sort the elements
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Algorithm Secure Operation Complexity

Csort(n, k) n�Mult(k) + n� ShareConv(k) + Shuffle(n, 2k) + n� Declassify(k)

Rsort(n, k) k · (n�Mult(k) + n� ShareConv(k) + Shuffle(n, 2k) + n� Declassify(k))

Qsort(n, k) Shuffle(n, k) + log n · (n� LessThan(k) + n� Declassify(k))

CountOnes(n, k) 0

CharVec(k) k · OuterProd(
√

2k, 1)

MultByBit(k) OuterProd(k + 1, 1).

Table 6.2: Complexity of building block operations

Data: 〈[a]〉 and 〈[b]〉 where all elements except 0 are unique
Result: 〈[c]〉 = 〈[a ∩ b]〉, |c| = min (|a|, |b|)

1 〈[d]〉 ← Sort(〈[a]〉‖〈[b]〉) ;
2 〈[t1]〉 ← 0 ;
3 〈[s1]〉 ← 0 ;
4 foreach i ∈ {1, . . . , |a|+ |b| − 1} do
5 〈[ti]〉 = Equal(〈[di]〉, 〈[di−1]〉) ;
6 〈[si]〉 = MultByBit(〈[ti]〉, 〈[di]〉) ;

end
7 〈[c]〉 = Csort(〈[t]〉 ./ 〈[s]〉) ;
8 return 〈[c]〉[0 : min (|a|, |b|), 1] ;

Algorithm 8: Set intersection Set∩

once more according to the bits t in order to get all the zeroes into the end of the array, so that the excessive
zeroes could be safely removed. The intersection contains at most min (n1, n2) elements.

We have |s| = |c| = |a|+ |b| = n. The iterations of the for-cycle do not depend on each other and hence
are parallelizable. The number of used operations is Sort(n, k) +n� (Equal(k) + MultByBit(k)) + Csort(n, k).
Sort can be instantiated either to Rsort or Qsort, and one may be preferable to the other depending on the
parameters and whether we want to win more in rounds or in communication.

6.4.3 Set difference of k-bit elements:

The algorithm is analogous to set intersection. The computation of c = a \ b is given in Alg. 9. The
difference is that now we should leave exactly the elements that are in a, but not in b. In order to do this,
we add a bit 1 to each element of a and a bit 0 to each element of b, so that now we sort pairs of elements.
After sorting, if two elements are equal, then the bit 0 comes before 1. Now if two sequential elements are
the same in c, we set ti = 0. Otherwise, we set ti = 1 unless the element comes from the second set (has
the label 0).

Adding a bit to a, b and removing it from d is free in any secret sharing scheme since we treat this
concatenation just as a pairing. The number of used operations is almost the same as for the set intersection,
except one extra bit in Sort(n, k + 1) that adds a negligible complexity overhead compared to Set∩.

The summary of set operation complexities is given in Tab. 6.3.

6.4.4 Mixed Columns

If some columns of a sparse matrix are dense, then our set based algorithm can be much slower than ordinary
bit vector intersection. If there is just a single item that is contained in all m transactions, then m′ = m,
and we do not reduce the table size at all. Even if we agree to leak precise density of each column, it may
happen that there are only a few dense columns in the beginning, but their number increases after a couple
of iterations, as the sparsest columns will be just filtered out due to not reaching the threshold. We might
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Data: 〈[a]〉 and 〈[b]〉 where all elements except 0 are unique
Result: 〈[c]〉 = 〈[a \ b]〉, |c| = |a|

1 〈[a′]〉 := 〈[a]〉 ./ [1]|a| ;

2 〈[b′]〉 := 〈[b]〉 ./ [0]|b| ;

3 〈[d]〉 ← Sort(〈[a′]〉‖〈[b′]〉) ;
4 〈[t1]〉 ← 0 ;
5 〈[s1]〉 ← 0 ;
6 foreach i ∈ {1, . . . , |a|+ |b| − 1} do
7 〈[ti]〉 = Equal(〈[di]〉[0], 〈[di−1]〉[0])− 〈[di]〉[1] ;
8 〈[si]〉 = MultByBit(〈[ti]〉, 〈[di]〉[0]) ;

end
9 〈[c]〉 = Csort(〈[t]〉 ./ 〈[s]〉) ;

10 return 〈[c]〉[0 : |a|, 1] ;
Algorithm 9: Set difference Set\

Algorithm Call Returned Value Secure Operation Complexity

Set∩(〈[a]〉‖〈[b]〉) 〈[c]〉 = 〈[a ∪ b]〉 Sort(n, k) + n� (Equal(k) + MultByBit(k)) + Csort(n, k)

Set\(〈[a]〉‖〈[b]〉) 〈[c]〉 = 〈[a \ b]〉 Sort(n, k + 1) + n� (Equal(k) + MultByBit(k)) + Csort(n, k)

Table 6.3: Set operations

try to maintain the set format for sparse columns and the bit format for dense columns simultaneously. The
main question is how to find the intersection of a set-represented and a bit-represented column.

On each iteration, the algorithm should now decide, to which columns it applies the set-based approach,
and to which the bit-based approach. The table has size m × n as before. The algorithms convert this set
of pairs to set and bit based columns based on the value of m′, which defines a sparse column.

We will further assume that all the algorithms are based on xor sharing, as the subalgorithms that we
will use are significantly less efficient for additive sharing.

• Converting a bit matrix column to a set matrix column (Bits2Set) This algorithm transforms
a column of a bit matrix to a column of xor shared row identifiers of length m′ where m′ is a known
upper bound on the number of nonzero entries. This is shown in Alg. 10

Computing the multiplications is free since we are multiplying by a public value j, and bi ∈ {0, 1}. The
only thing that remains is Csort. This transformation is itself already more expensive than multiplying
bit vectors, and hence it should be used only if the set representation will be reused afterwards.

• Converting a set matrix column to a bit matrix column (Set2Bits) This algorithm is based on
finding the characteristic vector of each set element and summing them up. This is shown in Alg. 11.

The complexity of this algorithm is m′ � CharVec(k).

Data: A xor shared bit vector 〈〈b〉〉 of length m with at most m′ nonzero entries
Result: A xor shared set representation 〈〈c〉〉 of 〈〈b〉〉

1 foreach i ∈ {1, . . . ,m} do
2 〈〈ci〉〉 = 〈〈bi〉〉 · i ;

end
3 〈〈d〉〉 = Csort(〈〈b〉〉 ./ 〈〈c〉〉) ;
4 return 〈〈d〉〉[0 : m′, 1] ;

Algorithm 10: Bit vector to a set Bits2Set
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Data: A xor shared set representation 〈〈c〉〉 of length m′ with over m elements
Result: A xor shared bit vector representation 〈〈b〉〉 of 〈〈c〉〉

1 foreach i ∈ {1, . . . ,m′} do
2 〈〈di〉〉 = CharVec(〈〈ci〉〉,m) ;

end
3 〈〈b〉〉 =

⊕m
i=1〈〈di〉〉 ;

4 return 〈〈b〉〉 ;
Algorithm 11: Set to a bit vector Set2Bits

Type Operation Secure Operation Complexity

xor Sets2Bits(m′, k) m′ � CharVec(k)

Bits2Set(m, k) Csort(m, k)

Table 6.4: Complexities of bit-set conversion protocols

The summary of the auxiliary protocols is given in Tab. 6.4.

6.4.5 Parallelization issues

One important advantage of bit approach is that if we need to find the intersection of the same column with
several other columns, then we can apply OuterProd instead of ordinary multiplication, which is much more
efficient. Hence it is not very fair to compare the two approaches by the cost of one intersection. Although
it is not applicable to Eclat and Diffset, it can still be found in Apriori and optimized hybrid Apriori-Eclat
algorithms that attempt to partially parallelize the search of Eclat, as it was done in [4]. More discussion
on this topic can be found in [29].

6.4.6 Other possible optimizations

There are some places that can be optimized, but whose theoretical efficiency has not been estimated yet.

• Our intersection and set difference algorithms for sparse columns provide sorted output. Converting
a bit vector to a set vector also provides sorted output, and there are no other ways of obtaining set
represented columns. Hence we may assume that both inputs of the intersection and set difference
algorithms are already sorted, but the radix sort and the quick sort do not make any use of this
assumption. Instead, we could apply just a single step of merged sort that takes two sorted arrays as
an input and merges them together. For this, we could use for example the sorting network approach.

• When we are finding an intersection of a set represented column with a bit represented column, we first
need to transform the set represented column to a bit column, and then transform the result back to
the set representation since it is definitely sparse. Instead, we could apply some kind of oblivious read
directly, treating set elements as private indices, and the bit vector as the array from which the values
are read. Here we could use the private lookup protocol that we reported in deliverable D2.2.2 [5,
Chapter 4].
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Chapter 7

Business Process Engineering and Secure
Multiparty Computation

A business process is a collection of structured activities and events that allows an enterprise to achieve
a business goal. Business processes are operated by business functional units whose tasks are either per-
formed manually or are computer-based. Unambiguous specification of the enterprise’s business processes
is necessary to monitor the process performance, to automate the computer aided tasks and to re-engineer
the enterprise structure. For this reason several high level modeling languages have been proposed (e.g.
BPMN [45] and EPC [42]). There is a general agreement (see, e.g. [41]) that well-formed business processes
correspond to bounded Petri nets (or more specifically, sound workflow nets) and service automata [31], and
several proposals (e.g. [14]) demonstrate techniques to convert high-level models (such as BPMN) to Petri
nets or service automata.

Business processes often involve the structuring of activities of several organizations. This is the case
when several potentially competitive enterprises can share their knowledge and skills to form a temporary
alliance, usually called a virtual enterprise (VE), in order to catch new business opportunities. Virtual
enterprises can be part of long-term strategic alliances or short-term collaborations. To effectively manage
a virtual enterprise, receiving well-founded support from business process engineering techniques is critical.

One of the main obstacles to such business process engineering is the perceived threat to the participants’
autonomy. In particular, the participants can be reluctant to expose their internal processes or logs, as this
knowledge can be analyzed by the other participants to reveal sensitive information such as efficiency secrets
or weaknesses in responding to market demand. Moreover, the value of confidentiality of business processes
is widely recognized.

In this Chapter we use SMC techniques to handle two problems in this context: VE process fusion,
Business Process Matching and Log auditing.

VE process fusion. The dependencies among the activities of a prospective VE cross the boundaries of
the VE constituents. It is, therefore, crucial to allow the VE constituents to discover their local views of the
inter-organizational workflow, enabling each company to re-shape, optimize and analyze the possible local
flows that are consistent with the processes of the other VE constituents. We refer to this problem as VE
process fusion. Even if it has been widely investigated, no previous work addresses VE process fusion in the
presence of privacy constraints.

Business Process Matching. A non-trivial process engineering task is to ensure soundness (i.e., inter-
operability) of the collaboration of VE constituents: can the interactions between the partners lead to a
deadlock; are the involved parties guaranteed to terminate properly; can the collaboration lead to documents
that are never collected by the recipient? Business process matching is the activity of checking whether a
given business process can interoperate with another one in a correct manner. In case the check fails, it is
desirable to obtain information about how the first process can be corrected with as few modifications as
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possible to achieve interoperability. In case the two business processes belong to two separate enterprises
that want to build a virtual enterprise, business process matching based on revealing the business processes
poses a clear threat to privacy, as it may expose sensitive information about the inner operation of the
enterprises. We propose a measure for similarity between business processes and use this measure to devise
an algorithm that constructs the most similar process to the first one that can interoperate with the second
one.

Log auditing. This problem consists in enabling a participant that owns a business process to check if
the partner’s logs match its business process, thus enabling the two partners to discover failures, errors and
inefficiencies.

7.1 Virtual Enterprise Process Fusion

In [19] we investigate a mechanism to establish cross-organizational business processes, or more precisely, to
identify for each participant of a virtual enterprise (VE) which operations can be performed locally. In other
words, we need to compute the contributing subset of the existing local business process that is consistent
with the processes of the other VE constituents. We refer to this problem as VE process fusion.

Here we consider two mutually distrustful parties, each following a local business process, that wish to
compute their local view of the VE process, assuming no trusted third party is available. The VE process is
modeled as the synchronous composition of the participant work-flows, and each participant’s local view is
represented by a process that is trace equivalent to the VE process up to transitions that are not observable
by the participant itself. The two parties are reluctant to reveal any information about their own business
process that is not strictly deducible from the local view of the other party.

Assume two enterprises a and b, with their own business processes, that cooperate to build a VE. For
each of the two enterprises we are given a local alphabet, Σa and Σb, respectively. Each enterprise also owns
a local business process, representing all possible allowed executions, that is given as a bounded labelled
Petri net (Na and Nb, respectively) that is defined over the corresponding local alphabet. For example,
consider the Petri nets depicted in Fig. 7.1a and 7.1b. The symbols of the alphabets can represent various
types of actions or events:

1. an internal task of the enterprises (the boxes labelled E, D, G and H, standing for tasks such as the
packaging of goods and the like),

2. an interaction between the two enterprises (A and B, representing tasks such as the exchange of
electronic documents),

3. an event observed by one of the enterprises only (P , the receipt of a payment),

4. an event observed by both enterprises (C, the departure of a carrier from the harbor), and

5. a silent event (black boxes, usually used to simplify net structure).

Let N be a labeled Petri net defined over the alphabet Σ. We use projΣ′(N) to represent the projection
of the net on an alphabet Σ′ ⊆ Σ, obtained by hiding all transitions that are labeled with symbols not
contained in Σ′. With each execution of the net, we associate a trace, which is a word in Σ∗. The set of all
traces of the net is called the language of N and is denoted by L(N).

Let N1 and N2 be two labeled Petri nets defined over the alphabets Σ1 and Σ2 respectively. The two
nets are trace equivalent, denoted N1 ∼ N2, whenever L(N1) = L(N2). Finally, the product of the two nets
N1 ×N2 is a labeled Petri net (over the alphabet Σ1 ∪ Σ2) that synchronizes the transitions of the original
two nets that carry the same label. The Petri net product offers a natural way to model complex systems
by composing elementary components.
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(a) Na

(b) Nb (c) N ′b

Figure 7.1: Business processes modeled with Petri nets

The problem of VE process fusion can be defined as computing the mapping:

Ni 7→ N ′i (i ∈ {a, b})

where N ′i ∼ projΣi
(Na × Nb). This describes the problem of each participant computing from its local

business process Ni a new process, consistent with the global VE business process represented by the
synchronous composition. If there are no privacy constraints, then implementing VE process fusion is
straightforward: the two parties can simply (1) exchange their Petri nets, (2) compute the product Petri
net Na ×Nb, and finally (3) project Na ×Nb on their respective alphabet Σi.

To illustrate VE process fusion, consider the following running example. Let a and b be two enterprises,
with business processes as shown in Fig. 7.1a and 7.1b, respectively. Intuitively, when enterprise a is fused
with enterprise b, its business process must be updated so as to satisfy the partner’s constraints. For instance,
an analysis of the fusion suggested above will reveal that the encircled activity B in Fig. 7.1a cannot be
executed any more after the fusion.

Here we are interested in preserving the participants’ privacy. In particular, we wish the two participants
to obtain N ′a and N ′b, respectively, without being able to learn about the other enterprise’s processes more
than what can be deduced from their own process (i.e. the private input) and the obtained result (i.e. the
private output). Apart from the processes, we also consider the alphabet differences to be private. That
is, we consider public just the common alphabet Σa ∩ Σb (i.e. the events of type 2 and 4). For example,
regardless whether enterprise b owns the business process Nb or N ′b from Fig. 7.1, the sub-process of Na

that is consistent with the observable partner’s constraints is one and the same, namely the Petri net shown
in Fig. 7.2 (presented for convenience as the superimposition of the observable external constraints to the
original process of enterprise a). Therefore, the mechanism used to implement process fusion should not
allow party a to distinguish between Nb and N ′b or any other partner process that gives rise to the same
local view of a.

We address VE process fusion by lifting the problem to privately intersect regular languages. In [20] we
addresses the problem of computing the intersection of regular languages in a privacy-preserving fashion.
Private set intersection has been addressed earlier in the literature, but for finite sets only. We discuss the
various possibilities for solving the problem efficiently, and argue for an approach based on minimal deter-
ministic finite automata (DFA) as a suitable, non-leaking representation of regular language intersection.
We propose two different algorithms for DFA minimization in a secure multiparty computation setting,
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Figure 7.2: The local view of a after its fusion with b

illustrating different aspects of programming based on universal composability and the constraints this sets
on existing algorithms. The implementation of our algorithms is based on the programming language Se-
creC. In [19] we demonstrate how these results can be extended to deal with business processes that are
formally modeled with bounded Petri nets, and thus addressing VE process fusion. Furthermore, we provide
a prototype implementation of our proposed technique, developed as a plug-in of ProM [44], a well known
business process analysis platform.

7.2 Privacy Preserving Business Process Matching

A non-trivial process engineering task is to ensure soundness (i.e., interoperability) of enterprise collabo-
rations. Whenever applicable, top-down development approaches such as [43, 22] can be used to ensure
soundness of the interorganizational processes, while meeting privacy requirements. Such approaches typi-
cally consist of three phases: (i) the participants agree upon a global (and publicly known) process that is
subject to global soundness analyses, (ii) from the global process, local interfaces (one for each participant)
are automatically synthesized, and (iii) each partner locally implements a private process and checks that
it conforms to its public interface. This scheme allows to transfer the soundness properties of the global
process to the composition of the private processes without publishing the latter.

If the agreement phase is not desirable, and the corresponding definition of a shared business process is
not possible, a bottom-up approach must be taken instead. Each participant owns then an already existing
private process, and the process engineering task becomes the one of guaranteeing that their composition is
sound. Such a bottom-up approach must face two problems: (i) the global process and the public interfaces
are not available, thus the soundness of the composition of “secret” processes must be checked without
revealing information about the constituents, and (ii) if the soundness check fails, a Boolean result is of little
use, since the participants have no information about the global process and thus can not investigate what
is wrong. This prevents the participants from adapting their local procedures to form a sound collaboration.

In [21] we present a bottom-up approach to checking soundness of interorganizational business processes
that addresses both these problems. We demonstrate a scenario based on an example from [43], assuming two
parties pA and pB that own private business processes represented as service automata A and B. Figure 7.3a
depicts the service automaton of a registration office. According with a customer request, this office can
prepare passports and ID cards. In both cases, the office informs the customer about the cost and, if
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(a) B (b) A1 (c) A2

Figure 7.3: A registration office and two customer processes

needed, stores the customer’s fingerprints. Finally, it delivers the requested document to the customer. Two
customers (Figures 7.3b and 7.3c) check whether they can collaborate with this office. Assuming soundness
means deadlock freedom, the soundness check will succeed for customer A1 and fail for customer A2. In
fact, the second customer requests an ID card without providing the necessary fingerprints, thus leading the
collaboration to a deadlock, and it never collects the delivered invoice.

To address problem (ii) above, in [21] we introduce a measure for behavioral similarity between two
automata. Then, Business Process Matching is the problem of checking whether the composition of the
automata A and B is sound, and in case it is not, to allow the participant pA to discover, among all automata
that can be soundly composed with B, the one that is most similar to A. This enables a correction loop,
where one of the two participants can refine its own process (possibly accepting the suggested correction)
and repeat the soundness check. This goal is achieved under strong privacy constraints: nothing more is
leaked to the participants or any third party than what can be deduced from the result.

Our approach is based on the combination of three techniques: (i) we lift the check of the soundness
of the automata composition to matching one of the automata against the operating guideline of the other
(i.e., a representation of all service automata that can soundly collaborate with it, see [31]), (ii) we introduce
the notion of weighted matching as a measure for matching degree, and show how to compute this measure
and in the same time extract the behaviourally most similar service that can soundly collaborate with the
other party, and (iii) we implement an algorithm to compute weighted matching while preserving privacy
by means of Secure Multiparty Computation (SMC) techniques.

Our proposal is a bottom-up mechanism to match business processes and to suggest suitable corrections.
Existing approaches for process matching that take into account secrecy of the input processes are top-
down and require to disclose the complete set of strategies of the participants (by either publishing a public
interface [43] or by disclosing the complete operating guideline). We go beyond these results, by only leaking
one of the possible strategies for the partner’s process.

7.3 Log Auditing

Identifying errors in activities that involve several business partners and cross enterprise boundaries is
challenging, because these activities must respect the policies of all involved partners. From a behavioral
point of view, such constraints can be rephrased to require that all process instances are consistent with the
business processes of all partners.

Log auditing consists of checking whether the log of a terminated process instance matches a predefined
business process, and of identifying possible mismatches. Here we consider two mutually distrustful parties,
one party owning the log and the other one owning the business process, assuming no trusted third party is
available. The two parties are reluctant to reveal any information about their log and business process that
is not strictly deducible from the matching result.

Assume two enterprises a and b. For each of the two enterprises we are given local alphabets, Σa and
Σb, respectively. Similarly to Section 7.1, we assume that Σ = Σa ∩ Σb are events and interactions shared
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between the two enterprises, while (Σa∪Σb)\Σ are internal tasks. Enterprise a recorded the log of a process
instance by monitoring enterprise activities; the log is given as a word ω ∈ Σ∗a. Enterprise b owns a local
business process, representing all possible licit executions, that is given as a bounded labelled Petri net Nb

defined over the corresponding local alphabet.
Formally, the problem of log auditing is to compute whether

projΣa∩Σb
(ω) ∈ projΣa∩Σb

(Lb) .

If there are no privacy constraints, then log auditing is simple: the two parties can simply exchange their
logs and processes, and replay the string ω on the Petri net.

In [27], we enable the two participants to check the matching without being able to learn about the other
enterprise’s process or log more than what can be deduced from the own input and the obtained result.
Apart from the process and the log, we also consider the alphabet differences as private values. Hence, we
consider only the common alphabet Σa∩Σb as a public value. To execute log auditing without compromising
the participants’ privacy we introduce a new SMC protocol for private lookup.
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