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Executive Summary:
Advances in Secure Multiparty Protocols

This document summarizes deliverable D2.2.1 of project FP7-284731 (UaESMC), a Specific Targeted Re-
search Project supported by the 7th Framework Programme of the EC within the FET-Open (Future and
Emerging Technologies) scheme. Full information on this project, including the contents of this deliverable,
is available online at http://www.usable-security.eu.

This report contains a review of the advances in secure multiparty protocols made during the first year
of the UaESMC project. We describe our results obtained while searching for a solution for each of the
problems we decided to tackle.

First, we look at statistical analysis. We begin by giving possible privacy-preserving solutions for such
basic database operations as data collection and storage, selection, join and sorting. These operations are
often used especially when statistically analysing data. We go on to talk about the most used statistical
measures—five-number summary, mean, variance and standard deviation—that can give the analyst an
overview of the data they are not allowed to see. This gives the analyst an opportunity to get information
for further studies on the data. We also decided to start looking into statistical tests by tackling the simple
two-sample Student’s t-test. Analysts have also expressed concern about the quality of entered data and
how it is difficult to do data cleaning if they cannot see the data. To address this concern, we also started
to look into how outlier detection can be done in a privacy preserving way. We end this chapter by looking
into secure data classification on our chosen platform Sharemind.

Second, we look at privacy-preserving optimization. We start by looking at privacy-preserving linear
programming and then move on to genetic algorithms (GA) to help us solve the secure subset covering
problem and to find the shortest path in a graph. We deduce that GAs are suitable for the first task, but
rather less suitable for the second one, at least in its usual linear-programming formulation.

Finally, we look at privacy-preserving network management. We require identifying links among vertices
in a network. These links can represent routing paths or intrusion detection events. This problem can
be formally phrased as finding the transitive closure of a graph. We propose an algorithm to solve this
problem and describe three scenarios that are possible at the end of the algorithm. We intend to compare
the performance of these scenarios to find the one that is most feasible.
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Chapter 1

Introduction

This report contains a review of the advances in secure multiparty protocols made during the first year of
the UaESMC project. Deliverable D5.2.1 [4] gives the descriptions of the different problem categories that
were chosen as a result of Deliverable D1.2 [21] as Milestone 1. They are the following:

• Privacy-preserving statistical analysis of databases,

• Privacy-preserving optimization,

• Privacy-preserving network management and operation.

A thorough description and the reasoning behind the choices is given in Deliverable D4.1 [11].
We describe our results obtained while searching for a solution for each of the problems we decided to

tackle. We give a reasoning why we decided to address the specific concerns, what techniques we tried and
what was developed as a result.

In addition, we implement prototypes as proposed solutions for chosen problems. These are described in
Deliverable D5.1.1 [5]. Based on the benchmark results of these implementations, we can find shortcomings
and word possible improvements.

In the following chapters we talk about the concrete sub-problems of the problems from Milestone 1.
In Chapter 2, we talk about privacy-preserving statistical analysis of databases, in Chapter 3, privacy-
preserving optimization and in Chapter 4, privacy-preserving network management and operation. Each of
these chapters has subchapters for the specific problem that we addressed.
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Chapter 2

Privacy-preserving statistical analysis

The result of this chosen problem category is a statistical suite or API that can help data analysts use
secure multiparty computation in their analyses without having to write the code for standard statistics
metrics or tests. It is similar to what R provides but meant for computations on shared data. We tackle
the application scenarios described in Subsection 2.8 of Deliverable D4.1 [11].

We are building the statistical suite on top of the secure multiparty computation framework Sharemind.
This framework, developed over the years in CYB, provides us with a multitude of features, allowing us to
concentrate on building the statistics API. The framework provides us with

• a database management system; facilities to load data from persistent storage and write it back again;

• a full-fledged programming language SecreC to express our algorithms in terms of primitive opera-
tions;

• protocol suites implementing these primitive operations in secure manner, as well as possibilities to
integrate new operations into them.

At the same time, our privacy-preserving statistics operations do not significantly depend on the internal data
representations and protocols employed by Sharemind. Hence they could be ported to other frameworks
without too much effort.

The main protocol suite of Sharemind stores private values by sharing them additively over Z2n among
three parties. The framework is flexible in allowing other suites to be plugged in, and used beside the
existing one.

2.1 Data collection and sharing

When data is gathered in the secret shared database, metadata must also be added. While the information
like data types, attribute count and the amount of data is not hidden in some implementations of secret
shared databases, it can be obfuscated to some extent. Unfortunately, to aggregate data, we need to know
at least the types of data, as one operations can require different protocols depending on the data type.
In the following, we assume that information about the data types and the descriptions of the ontologies,
classifiers or domains is available to the analyst. Essentially, this does not leak valuable information.

Sometimes single values are missing from the gathered dataset. One of the first challenges we face is
how to deal with missing data. There are two options: either we simply leave the corresponding cells empty,
which can leak some information, or we use an extra attribute for each attribute to hold the information.
We only need to store one shared bit of extra data per entry. Depending on the implementation of the
database, the latter uses extra storage space of n ·a ·x bits, where n is the number of entries, a is the number
of attributes, and x is the smallest data unit that can be stored in the database.

In terms of the representation given in Subsection 2.8.1 of Deliverable D4.1 [11], we store the data of
the physical table T as T ′ = (T,E,m), where m is the identity vector and E contains one axis ia(a) of
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boolean values for each axis a of table T . A value defined by ia(a) is 0 if the corresponding value in the axis
a is missing and 1 otherwise. This information contained in the derived axis ia(a) will be transferred to the
mask vector m.

2.2 Selection

As our aim is to hide the subjects that correspond to a given filter value, we give the result of the selection
as a logical table σ(T, p) = T ′ = (T,E,m), where T is the original table, E is empty and m is the mask
vector that is 1 if the value is in the selection and 0 otherwise. The mask vector is calculated based on the
criterion p and is then multiplied with the existing mask vector of table T that contains information about
value availability. This ensures that the availability information is accounted for in later computations.
From this, it is possible to compute a logical table T ′′ = (S,E,m), where E and m are from T ′, every axis
of an observation o′[i] ∈ S is 0 if m[i] = 0 and o′[i] is o[i] ∈ T if m[i] = 1, i ∈ range(T ).

2.3 Join

This Section describes how to perform a privacy-preserving database join operation or to build derived tables
according to the introduction of this concept in Section 2.8.3 of Deliverable D4.1 [11]. Let us have two secret-
shared tables T1 and T2 with m1 and m2 rows and n1 and n2 columns respectively. In the following, we
will obliviously compute J(T1, T2, p) and we call the columns used in the predicate p key columns. A naive
oblivious database join operation on these two tables would first generate full Cartesian product of the two
tables (or their key columns) and then apply oblivious comparison for all possible key pairs. Rows with
non-matching keys are then removed and the resulting table obliviously shuffled to hide which rows stayed
in the joined table. This solution is secure but requires Θ(m1m2) comparison operations.

2.3.1 Oblivious database join with unique keys

To come up with a more efficient database join algorithm, we consider a specific kind of join, equi-join, where
the join predicate consists only of equality operation(s), combined using propositional connectives. Let us
have a setting where the computing parties obliviously apply pseudorandom permutation πs to encrypt the
key column. As πs is a pseudorandom permutation (a block cipher depending on an unknown key s) and all
the values in the key column are unique, the resulting values look completely random if none of the miners
knows πs. Hence, it is secure to publish all the encryptions of key columns. Moreover, the tables can be
correctly joined using the encryptions instead of key values.

However, such a join still leaks some information – parties learn which database table rows in the first
table correspond to the database rows in the second table. By obliviously shuffling the rows of initial tables,
this linking information is destroyed. The resulting algorithm is depicted as Algorithm 1. Note that in each
step all the tables are in secret-shared form. In particular, each computing party performs the actual join
operation with its local shares and thus the joined table is created in a secret-shared form.

Note that the last optional step in the algorithm is necessary if there exist some duplicate keys in the key
columns. In this case the structure graph of matching keys in tables still leaks, but only with the precision
of its isomorphism.

As the actual join operation is performed on public (encrypted) values, the construction works not only
for inner joins but also for the left and right outer joins, where either the left or right table retains all its
rows, whether a row with a matching key exists in the other table or not. These outer joins are common in
data analysis. However, in this case parties must agree on predefined constants to use instead of real shares
if the encrypted key is missing.

By combining the secure oblivious AES evaluation1 and the oblivious shuffle from [17], we get an efficient

1We have a yet unpublished implementation of the AES block cipher that works on bitwise shared values and is highly
vectorized.
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Algorithm 1: Algorithm for performing an equi-join on two tables.

Data: Two secret shared tables T1 and T2 with key columns k1 and k2.
Result: Joined table T ∗.

1 Parties obliviously shuffle each database table Ti resulting in a new shuffled table T ∗i with a key
column k∗i .

2 Parties choose a pseudorandom permutation πs by generating a shared key s.
3 Parties obliviously evaluate πs on all shared key columns k∗i .
4 Parties publish all values πs(k

∗
ij) and use standard database join to merge the tables based on

columns πs(k
∗
i ). Let T ∗ be the resulting table.

5 If there are some non-unique keys in some key column πs(k
∗
i ), parties should perform additional

oblivious shuffle on the secret-shared table T ∗.

instantiation of the Algorithm 1. For all database sizes, the resulting protocol does Θ(m1 + m2) share-
computing operations and Θ(m1 logm1 +m2 logm2) public computation operations.

2.4 Sorting

2.4.1 Principles of privacy-preserving sorting

Privacy-preserving sorting is both a useful tool in statistical processing and an important primitive in other
data analysis algorithms. For example, in Section 3.2 we show how sorting is required for implementing
certain kinds of genetic algorithms.

We require that sorting is oblivious of the data. This means that the sorting algorithm must rearrange
the input data into the desired order without being able to learn the values or even their relations with one
another.

The insight that helps us solve this problem comes from the theory of sorting networks. A sorting
network is an abstract structure that consists of several layers of comparators that change the positions of
incoming values. These comparators are also called CompEx (compare-and-exchange) functions. A CompEx
function takes two inputs, compares them according to the required condition and exchanges them, if the
comparison result is true. The following mathematical representation shows a CompEx function for sorting
numeric values in the ascending order.

CompEx(x, y) =

{
(y, x), if x > y
(x, y), otherwise.

Basically, a sorting network is an arrangement of CompEx functions so that if the comparators of all
the layers of the sorting network are applied on the input data array, the output data array will be sorted
according to the desired condition. For a more detailed explanation of sorting networks with examples,
see [15].

2.4.2 Implementing sorting networks obliviously

A sorting network is suitable for oblivious sorting, because it is static and independent of the incoming data.
One network will sort all possible input arrays, making the approach inherently oblivious. Furthermore,
sorting networks are relatively straightforward to implement using secure multiparty computation, as we
only need a Min (minimum of two values) and Max (maximum of two values) operation to sort numeric
data. Using these two operators, we can easily implement the CompEx function as a straight line program
(one with no conditional branches). For an example of a CompEx function that sorts an array of numbers
in an ascending order, see the following formula.

CompEx(x, y) = (Min(x, y),Max(x, y))
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Algorithm 2: Algorithm for sorting an array of integers.

Data: Input array D ∈ Zkn and a sorting network N ∈ Lm.
Result: Sorted output array D′ ∈ Zkn.

1 foreach Li ∈ N do
2 foreach (x, y) ∈ Li do
3 (Dx,Dy)← CompEx(Dx,Dy)
4 end

5 end

We express a k-element array of n-bit integers as Zkn. We will assume that the input and the output of
the sorting network are in this form. We also need to represent the structure of that network. Intuitively,
a sorting network consists of several layers of CompEx functions. The inputs of each CompEx function can
be encoded with their indices in the array. Therefore, we will represent a layer Li consisting of `i CompEx
functions as follows.

Li = (N× N)`i

The complete sorting network, consisting of m layers, will then be written as Lm. We also add one
restriction to the network for efficiency and simplicity. We assume that no index appears more than once
in each individual layer of the sorting network.

Algorithm 2 presents a general algorithm for evaluating a sorting network in this representation. Note
that we can use the same array D for storing the results of the compare-exchange operation, because
according to our assumption above, as a single layer does not use the same array index twice.

This algorithm is easy to implement securely, because we only have to provide a secure implementation
of the CompEx operation. The rest of the algorithm is independent of the data, and can be implemented
with public operations.

We intentionally omit guidance on how to implement a generator for sorting networks, as this is a
well-researched area. We refer the reader to the classical work of Knuth as a starting point [15].

2.4.3 Sorting more complex data structures

We often need to sort data in other form as arrays. For example, we may want to sort a table of values
according to a certain key column. In this case, we need to redefine the CompEx operation to work on the
full data structure.

Let’s consider the case where we need to sort a table of integer values according to a certain column.
Algorithm 2 still works perfectly, but we need to design a new kind of a compare-exchange function that
evaluates the comparison condition on the value from the respective column, but performs the exchange on
the whole table row.

Assume that our input data table is in the form of a matrix Di,j where i = 1 . . . k and j = 1 . . . l. Then,
the CompEx needs to compare and exchange two input arrays A,B ∈ Zkn according to the comparison result
from column c. Equation (2.1) shows the definition of such a function.

CompEx(A,B, c) =

{
(B,A), if Ac > Bc
(A,B), otherwise.

(2.1)

A suitable oblivious implementation for a CompEx shown in Equation (2.1) on this structure is given in
Algorithm 3. The algorithm uses two steps. First, it performs an oblivious comparison part of CompEx. In
the given example, it evaluates a greater-than comparison. The main important thing here is that the result
should be expressible as either 0 or 1 so that it can later be used in the oblivious exchange. The second step
is to obliviously exchange the input data based on the result of the comparison.

This algorithm has the following assumptions for oblivious implementation.
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Algorithm 3: Algorithm for obliviously comparing and exchanging two rows in a matrix.

Data: Two input arrays A,B ∈ Zkn, column index c ∈ {1 . . . k}.
Result: Pair of arrays (A′,B′) = CompEx(A,B, c).
/* Compute result of the condition */

1 b←
{

1, if Ac > Bc
0, otherwise.

/* Exchange the vectors based on the condition */

2 foreach i ∈ 1 . . . k do
3 A′i = (1− b)Ai + bBi
4 B′i = bAi + (1− b)Bi
5 end

1. We can obliviously implement the comparison operation on input data so that the result is represented
as a numeric zero or one.

2. We can subtract the comparison result from the constant 1.

3. We can cast the numeric zero-one result (or the subtraction result) to a type that can be multiplied
with the input data type.

4. We can add two values of the input data type.

Fortunately, these assumptions hold for different secure computation paradigms. It is relatively easy to
implement such an oblivious CompEx function with secure multiparty computation on different integer sizes.

2.4.4 Optimization using parallel operations

We now show how to optimize the implementation of the proposed algorithms using parallel operations
on multiple values. Such SIMD (single instruction, multiple data) operations are very efficient on most
secure multiparty computation paradigms. For example, secure multiparty computation protocols based on
secret sharing can put the messages of many parallel operations into a single network message, saving on
networking overhead.

If we observe the Algorithms 2 and 3, we see that it is trivial to make them use vector operations. First,
let’s consider the general sorting algorithm given in Algorithm 2. Note that the outer loop of that algorithm
can not be vectorized by replacing it with parallel operations. The intuitive reason is that every layer of the
sorting network is directly dependent on the output of the previous layer and this does not allow multiple
layers to be processed in parallel.

However, thanks to the assumption on the uniqueness of indices we made while describing the structure
of the sorting network, we can trivially vectorize the inner loop. Indeed, we can replace the entire inner
loop with two operations. One computes the maximum values of all input pairs and the other computes the
minimal values.

The same approach works also for if we want to implement sorting on matrices with the CompEx function
in Algorithm 3. The comparison operator can again be performed as a single parallel comparison, assuming
that the secure multiparty computation system provides such a protocol. The flipping of the comparison
results, the multiplications and the additions can all be performed in parallel, allowing also this function to
be efficiently obliviously implemented.

2.5 Simple statistical measures

Many interviewees (see [21]) emphasized the need to see the data before analyzing it in order to gain an
understanding of the cohort and to find out which tests would be interesting to conduct. With privacy-
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Algorithm 4: Algorithm for finding the median and quartiles of an axis.

Data: Input axis a of table T and corresponding mask vector m.
Result: Minimum min(T, a), lower quartile lq(T, a), median me(T, a), upper quartile uq(T, a) and

maximum max(T, a)
1 Parties obliviously shuffle the pair of vectors (a,m)
2 Declassify(m)
3 a′ = (a[i] | m(i) = 1, i ∈ range(T ))
4 n← |a′|
5 b← Sort(a′)
6 min = b[1]
7 max = b[n]
8 Llq ← n ∗ 0.25
9 Lme ← n ∗ 0.5

10 Luq ← n ∗ 0.75
11 foreach α ∈ {lq,me, uq} do

12 α←
{

b[Lα]+b[Lα+1]
2 , if Lα ∈ N

b[dLαc], otherwise.

13 end

preserving computations and datasets, the aim is to keep the data secret so that no-one has access to
individual values. Therefore, we cannot give an analyst direct access to the data.

However, if dealing with large datasets, the analyst cannot grasp the data by looking at the individual
values anyway. They will perform simple measurements on the data and draw plots and graphs to get an
overview of the characteristics. We claim, that given access to common aggregate values, there is no real need
to see the individual values. But in order to support the analyst, we have to provide secure implementations
of the simple statistics he/she might be interested in.

Count

Based on the data representation described in Subsection 2.1, it follows that the count of values in an axis
of table T ′ is the sum of elements in the corresponding boolean value axis defined by E.

Sum

The sum (Sum) of an axis of values is computed by simply adding all the values in the axis together.

Five-number summary

The five-number summary is a descriptive statistic that includes the minimum, lower quartile, median,
upper quartile and maximum of a vector. This statistic can be quite revealing and can leak information as
we are, in some cases, outputting a single value instead of an aggregated value. Hence, these statistics must
be used with care.

Algorithm 4 describes how to find the five-number summary of an axis a in table T ′ = (T,E,m), where
T is the original table, E is empty and m is the mask vector. We look at this problem as if there is
already a mask filter present and we assume that the ’is available’ axis previously calculated by E is already
incorporated into the mask vector. If it is known that all values in the axes exist and there are no mask
vectors applied, we simply assume that m is the identity vector.

We begin by extracting the values that belong to the set defined by the mask vector m. Note, that we
are only trying to find the quartiles of one axis a of table T . We begin by shuffling the pair (a,m) using
the oblivious shuffle protocol from [17]. Next we declassify the mask vector m and make a new vector a′ by
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selecting only the values that are indicated by m: a′ = (a[i] | m(i) = 1, i ∈ range(T )). During this, a and,
hence, a′ remain secret shared. Now we have a vector of values for the current selection.

We go on by obliviously sorting the obtained vector (b ← Sort(a′)). We assume that we have a sorting
interface that handles the public sorting network generation for us when we provide it with the vector we
want to sort. We count the elements in a′ and compute the initial indices for the lower quartile Llq, median
Lme and upper quartile Luq by multiplying the element count with 0.25, 0.5, and 0.75, respectively.

The quartiles α ∈ {lq,me, uq} are chosen from the sorted vector b based on the initial indices Lα:

α←
{

b[Lα]+b[Lα+1]
2 , if Lα ∈ N

b[dLαc], otherwise
.

If the index Lα is a natural number, the value lies between Lα and Lα + 1. If not, then the index Lα is
rounded to the nearest integer (dLαc).

The five-number summary can be graphically represented as a box plot that gives a good overview of
the data. If the data is separated into different classes (defined by mask vectors), the box plots based on the
summaries calculated from these classes can be used for gaining a visual idea of what the data distribution
looks like in each class. This can be used, for example, for gaining an overview before carrying out Student’s
t-test.

Mean, variance and standard deviation

Let n be the number of subjects in the cohort. The most common measures for data are the arithmetic
mean, variance and standard deviation. These measures require the system to be able to handle private
addition, multiplication, division and square root. If the size n of a chosen cohort is public, we can use
division with a public divisor instead. This operation is faster and less complex than division with a private
divisor. Depending on whether these values can be published, we can also use public square root instead
of its private counterpart. As with all private computations, taking the square root of a private value is
considerably slower than the public version of this protocol. If protocols for these operations exist (they do
in the Sharemind framework), the implementation of these statistics is quite straightforward.

2.6 Comparison of two populations

Firstly we want to compare the means of two populations. For this we chose to to study the feasibility of
the private t-test. The t-test is a statistical hypothesis test based on the t-distribution.

2.6.1 Filtering the data

To perform the t-test, we first need to distribute the data into two groups based on some condition. There
are two slightly different ways of doing this: on one hand, we can choose the subjects in one group and
assume all the rest are in group two (e.g., people with high blood pressure and everyone else); on the other
hand, we can choose subjects into both groups (e.g., men who are older than 65 and have high blood pressure
and men who are older than 65 who do not have high blood pressure). There is a clear difference between
these selection categories and they yield either one or two mask vectors. In the former case, we calculate
the second mask vector by flipping all the bits in the existing mask vector.

To calculate the means, variances and standard deviations, we first multiply point-wise the axis a with
the mask vector m so that the values that do not belong to the population do not interfere with the
calculations. The count of elements can be found by calculating the sum of values in the mask vector.

2.6.2 Computing the test statistic

In the following, let s2i = VAR(Ri, a) and xi = Ma(Ri, a), where a is the axis we want to test, Ri =
(T,E,mi), T is the original table, E is empty and mi is the mask vector for population i ∈ {1, 2}. Let
ni = Sum(mi) be the count of subjects in population i ∈ {1, 2}.

11
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We look at two cases. Firstly, we assume that the variances of both populations are equal, and secondly
we assume that the variances are different. If the variances of both populations are equal, we calculate an
estimator of the common variance of the two populations as

s2 =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
.

The t-test statistic is

t =
x1 − x2

s

√
n1n2
n1 + n2

.

Secondly, If the variances of the populations are not equal, we calculate the estimate of the standard
deviation as:

sx1−x2 =

√
s21
n1

+
s22
n2

,

where s2i is the unbiased variance of the population i ∈ {1, 2}. The t-test statistic is

t =
x1 − x2
sx1−x2

.

If the null hypothesis is supported, the t-test statistic follows Student’s t-distribution with (n1 + n2 − 2)
degrees of freedom.

Similarly to the simple statistic measures, this kind of hypothesis testing requires the system to be able
to handle private addition, multiplication, division and square root. The same argumentation of public
versus private computations applies in this case as well.

2.6.3 Evaluating the significance of the statistic

In addition, we may make a second branching in our solution depending on whether the sizes of the two
cohorts are public or not. The t-test requires us to compare the calculated t-test statistic to the t-distribution
values based on the degrees of freedom. If this value is public and the test statistic can be made public as
well, the analyst can check the t-distribution table to find out whether the calculated result was significant
or not.

However, if these values cannot be published for some reason, we have to consider another approach.
Namely, we can pre-encode the t-distribution table and use oblivious lookup algorithms to check whether
our calculated t-statistic is significant or not.

2.7 Outlier detection

We elaborate on how to do outlier detection in oblivious manner. That means that once we have identified
the outliers we cannot show the data analyst which data points are classified as outliers nor can we show
how many outliers there are. Because of that we cannot actually throw out the outliers from the dataset.
Instead, the outlier detection algorithm should produce a (boolean) mask vector indicating which data points
are outliers and which are not. Before using the data vector in a computation, we can multiply it with the
mask vector rendering outliers to zeroes (or other suitable values) that are not taken into account in further
computations.

There are many different outlier detection methods and which one to use is highly dependent on the
properties of the dataset. In this Section, we will only consider univariate outlier detection mechanisms.
For example, one of the most simple outlier detection methods is to just remove the minimal and maximal
n% of the data values.

12
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2.7.1 Median absolute deviation

Another robust measure of detecting outliers that does not depend too much on the specific data scheme is
to pick a property that captures the shape of the concrete dataset. Traditionally, sample mean and sample
variance are used for this, but these properties are highly influenced by the existence of outliers. So using
them to detect outliers may give suboptimal results. Instead, Hampel [12, 13] suggests to use median and
median absolute deviation (MAD) as the properties to describe a given dataset and detect possible outliers.
For a dataset X, its element n is considered an outlier if

median− n > λ ·MAD, (2.2)

where
MAD = mediani(|Xi −medianj(Xj)|)

and λ is a constant. The exact value of λ depends on the dataset, but anything from 3 to 5 could be used
as a generic starting value.

As MPC protocols are often network-bound, we would like to have algorithms that are easily parallelizable
so we can use SIMD style operations. This algorithm is a good candidate for this as we do not have to
compute everything one element at a time. For a given dataset we can compute the median and MAD
once and use them as constants in equation 2.2 so classifying a given element becomes an evaluation of an
inequality with a constant. Hence, it is possible to classify all elements of a dataset at once.

2.7.2 Local outlier factor

Breunig et al. [8] have found that in many scenarios assigning an object a degree of being an outlier works
better than just binary classification. This degree is called local outlier factor (LOF) of an object. As the
name implies, this degree is local in the sense that it expresses how isolated the given object is. To this end,
LOF shares some principles with density-based clustering algorithms.

Here we will summarize the main notions of LOF, for an in depth overview refer to the original paper [8].

Definition 2.7.1 (k-distance of an object p). For any positive integer k, the k-distance of object p, denoted
as k-distance(p), is defined as the distance d(p, o) between p and an object o ∈ D such that

1. for at least k objects o′ ∈ D \ {p} it holds that d(p, o′) ≤ d(p, o); and

2. for at most k − 1 objects o′ ∈ D \ {p} it holds that d(p, o′) < d(p, o).

Definition 2.7.2 (k-distance neighborhood of an object p). Given the k-distance of object p, the k-distance
neighborhood of p contains every object whose distance from p is not greater than the k-distance: Nk(p) =
{q ∈ D \ {p}|d(p, q) ≤ k-distance(p)}.

Definition 2.7.3 (reachability distance of an object p w.r.t. object o). Let k be a natural number. The
reachability distance of object p with respect to object o is defined as

reach-distk(p, o) = max{k-distance(o), d(p, o)}.

Definition 2.7.4 (local reachability density of an object p). Local reachability density of an object p is
defined as:

lrdk(p) = 1/

(∑
o∈Nk(p) reach-distk(p, o)

|Nk(p)|

)
.

Definition 2.7.5 (local outlier factor of an object p). The local outlier factor of p is defined as

LOFk(p) =

∑
o∈Nk(p)

lrdk(o)
lrdk(p)

|Nk(p)|
.
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As noted before, LOF does not give a binary output value but rather describes the degree of being an
outlier for a given point. A LOF value approximately equal to 1 means that the given object is comparable
to its neighbors and thus not an outlier. LOFk(p) < 1 would imply that p is an inlier and LOF value larger
than 1 means that p resides outside of a cluster. The greater the LOF value, the farther away from the
cluster a given point is. The exact threshold of LOF from which an object is considered an outlier, depends
on a given dataset.

Implementation considerations

Here we consider the implementation-specific details for the local outlier factor (LOF) method. We will
concentrate on a linear additive secret sharing scheme used by the Sharemind framework.

Let us have a dataset D with n objects. We do not hide the value of n. Assume that the (integer)
distances of objects are given as a n×n matrix Dst, such that ∀o ∈ D ∀p ∈ D : Dsto,p = d(o, p). Now we can
compute k-distance of any object p by sorting the corresponding row in the matrix Dst and then picking the
k-th element from that row. However, constructing Nk(p) is more complicated as it may contain more than
k objects if some objects are equally distant from p as the k-th object in the sorted row. Checking values
one-by-one introduces branching that potentially leaks some information and also breaks parallelization.
Therefore, constructing Nk(p) obliviously and efficiently is an open problem that needs further research.
As we must not leak the size of Nk(p), we should implement it as an n-element binary mask vector. Then
finding its size is a local sum operation.

Combining the k-distance of each object and the distance matrix Dst we can construct a new n × n
matrix that contains reach-distk(p, o) for all pairs (p, o). Constructing this matrix is efficient as oblivious
max can be easily parallelized.

Now if we write out the equation to compute LOFk(p), we can see that it is one large fraction with
mainly sums and some multiplications in both numerator and denominator. Remind that addition is a
local operation and multiplications can be vectorized separately for the numerator and the denominator.
If in a given application the LOF value may be made public, the numerator and denominator should be
published separately so that the division operation could be done on public values to get an exact value of
LOF. However, if the LOF value must stay private, the numerator should be scaled up (for example 10 or
100 times) so integer division could be used. Of course, in this case the LOF threshold should be scaled as
well. One must take care that the (possibly) integers appearing in the numerator and denominator do not
overflow the data type boundary.

2.8 Data classification

The protocols for secure classification have already been composed before. For example, the Kernel Percep-
tron algorithm has been securely implemented in [16], where different cryptographic techniques are used for
different steps of the algorithm. Now this algorithm has been implemented using the available functionality
of Sharemind.

Without loss of generality, assume that our goal is to split the data into two classes. If we want to have
more classes, then we may just classify the already classified data again. The two classes be denoted for
example 1 and −1.

Let x1, . . . ,xn be the data parameter vectors (that in fact represent row vectors of a data matrix X),
and y1, . . . , yn the corresponding classes of x1, . . . ,xn. The idea of classification is the following: given a
training set S = {(x1, y1), . . . , (xn, yn)}, find a function g such that, g(xi) = yi for as many i as possible.

One of the easiest methods is to separate two classes with a straight line. If the data is linearly separable,
then we may take g(x) = 〈w,x〉 for a suitable vector w. The question is how to find a suitable w, and this
is based on finding the best solution for the equation X ·w = y (that matches as many y coordinates as
possible). The algorithm is described in more details in [20, Chapter 2].

Since not every data is linearly separable (for example, a circle on a 2D-plane), it has to be transformed in
such a way that it would become linearly separable. We may add more coordinates (for example, transform-
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ing the 2D plane to a cone makes it possible to separate circles with a z = 0 plane), but higher-dimensional
data is more difficult to handle.

Assume that we have a transformation ϕ that maps given data vectors to some higher-dimensional
linearly separable data vectors. The idea is to train the vector based on the values of some function k(xi,xj)
that is computed for all possible data vectors. The question is what this k could be. One example of k
would be k(xi,xj) = 〈xi,xj〉2, which is equal to 〈ϕ(xi), ϕ(xj)〉 where ϕ maps xi to a higher-dimensional
vector that contains all the possible squares of the initial coordinates of xi. In this case we can directly
compute k(xi,xj) without applying ϕ to the data vectors. There also exist SVM training algorthms based
on scalar product, so this example of k is indeed useful. This k is called a kernel function, and there are
more examples of suitable kernel functions in [20].

The kernel values can be for simplicity represented by a matrix K = (kij) = (k(xi,xj)).
Now the question is how this kernel will be used in classification. One of the particular kernel-based clas-

sifications algorithms is Kernel Perceptron (Algorithm 7.52 in [20]). Here we assume that the class vector y
consists of values 1 and −1. We may think of looking at the sign of 〈w, ϕ(x)〉 in order to predict the class of x.

Algorithm 5: Kernel Perceptron

Data: A kernel matrix K and class labels y ∈ {−1, 1}n.
Result: A weight vector α ∈ Zn.

1 α = 0;
2 repeat
3 for i=1 ton do
4 if yi ·

∑n
j=1 kij · aj ≤ 0 then

5 αi ← αi + yi;

6 until α is no more updated ;

Since the goal is to implement the privacy-preserving version of this algorithm, it would be good for
efficiency to parallelize as many computations as possible.

• Kernel computation: easy to parallelize. Since the entries of K are squared inner products of two
vectors 〈xi,xj〉2, each entry can be computed independently. The computation of each inner product
can in turn be parallelized: all the product terms of the sum

〈a, b〉 = a1 · b1 + a2 · b2 + . . .+ an · bn

can be computed independently of each other.

If the entries of the kernel matrix are 〈xi,xj〉p for some p > 2, the exponentiation can in turn be
parallelized for example using exponentiation by squaring.

• Updating the classifier vector: the iterations of the for-cycle are expensive. It would be good
to compute the entire cycle in parallel, but the problem is that each step is actually dependent on
the previous steps. Since computing them one by one is too slow, they are computed by parts in
parallel. For example, a training vector of length 50 can be computed in 10 sequential blocks of length
5. Increasing the number of blocks (reducung the parallelization) gives better results, but is slower.

• Evaluation: the obtained vector α can be applied to the test set in order to predict the classes
by computing sign(

∑n
j=1 k(x,xj) · aj) for each x in the test set (here the x1, . . . ,xn are the training

set vectors). This can be also efficiently parallelized: first of all, compute the corresponding kernel
matrix in the same way as for the training set, and then evaluate the classes of all the test set vectors
independently in parallel.
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Chapter 3

Privacy-preserving optimization

3.1 Privacy-preserving linear programming

We consider linear programming tasks in the form

minimize cT · x, subject to Ax = b, 0 ≤ x .

Here A is an m × n matrix (m ≤ n), b is a vector of length m and c is a vector of length n. There are n
variables in the vector x. Without lessening of generality we may assume that the quantity to be minimized
is just the variable xn, i.e. the vector c is of the form (0, . . . , 0, 1)T. Any linear programming task can
be brought to such a form by introducing a new variable w and adding the equation cT · x − w = w0 to
the constraints, where w0 ∈ R is determined (from out-of-band information about A, b and c) so, that the
minimal possible value of cT · x− w0 will certainly be positive.

The privacy requirements for our task are the following. The sizes m and n are public. Matrix A and
the vector b have to remain secret. The solution xopt may become public. We wish to transform the linear

programming task at hand to a task “minimize c′T · y, subject to A′y = b′, 0 ≤ y”, such that from the
solution yopt and secret data generated during the transformation, we could efficiently recover the solution
xopt to the original task.

Note that we do not attempt to hide the result of the linear programming task. If its secrecy is desired,
then it can be achieved (in statistical sense) by a separate, known problem transformation [9, 22] consisting
of shifting the values of all variables by a random amount.

We are interested in a problem transformation based solution because of its potential of being much
more efficient than the implementation of the simplex algorithm (or some other algorithm for solving linear
programming tasks) using the primitives for secure computation. Several such transformations have been
proposed beforehand [9, 22, 18, 19]. Unfortunately, these transformations either lack statements of security at
all (or the statements are informal), or difficult to combine with usual cryptographic security definitions in the
construction of larger applications. For our construction, we can state a pretty standard, indistinguishability-
based confidentiality definition. We reduce the security of our transformation to the assumed intractability
of a problem related to recognizing certain linear combinations among a set of vectors. As the values in
the statement of a linear programming task belong to the set of real numbers, our transformation is also
working with and producing structures made up of real numbers. Hence the assumed intractable problem is
also defined over real numbers, and is therefore new, because cryptography over reals has not received much
attention so far. Nevertheless, the assumption is tightly related to the Strong Secret Hiding Assumption [1]
defined over finite fields.

3.1.1 Notation

A m×n matrix A is in the reduced row-echelon form (RREF) if it is the result of Gauss-Jordan elimination.
This means, that
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• all its zero rows are below its non-zero rows;

• the leading entry in each row (the leftmost non-zero entry) equals 1 and is strictly to the right of the
leading entry of the row above it;

• the leading entry in each row is the only non-zero entry in its column.

For any m×n matrix A, there exists a m×m invertible matrix S, such that SA is in the RREF. Moreover,
the matrix SA is uniquely determined by A. We call SA the reduced row-echelon normal form of A and
denote it by norm(A). Two m×n matrices A and B satisfy norm(A) = norm(B) iff there exists an invertible
m×m matrix S, such that SA = B.

If A is a m × n matrix and π is a permutation of n elements, then let Aπ denote the matrix obtained
from A by permuting its columns according to π. If additionally B is a m × n′ matrix, then A|B denotes
the matrix of size m× (n+n′), the rows of which are the concatenations of corresponding rows of A and B.

The `2-norm of a vector (v1, . . . , vn) is the quantity
√
v21 + · · ·+ v2n.

The null space of A is the set of all such vectors v ∈ Rn, that Av = 0. Let A⊥ denote the kernel of A
— the transpose of the basis of the null space of A. The kernel of A has n columns and n− rank(A) rows.
To make A⊥ uniquely defined, we assume that it is in the RREF.

We denote the normal distribution with mean µ and standard deviation σ by N (µ, σ2). The probability
density function of N (µ, σ2) is fN (µ,σ2)(x) = 1

σ
√
2π

exp(−1
2(x−µσ )2). If a random variable X is distributed

according to N (µ, σ2), then the absolute value |X| is distributed according to the folded normal distribution
Nf(µ, σ

2).

3.1.2 Transformation

Recall that the linear programming task is to minimize xn, subject to Ax = b and x ≥ 0.

Given A of size m× n and b of size m, perform the following operations.

1. Let k and l be the security parameters. We suggest to take k about equal to n, and l at least 2n, but
so, that 2−l is negligibly small.

2. Let D be a random k × (n+ 1) matrix with non-negative entries, such that

• each set of k columns of D is linearly independent;

• each column of the matrix
(
A|−b
D

)
has the same `2-norm τ .

3. Let C be the following matrix:

C =

(
A −b 0

D −τI

)
,

where I is the unit matrix of the correct size (k × k).

4. Let V be a random (n+ k + 1)× l matrix generated as follows:

• the entries in the n-th row are negative;

• the entries in the (n+ 1)-st row are 0;

• the entries in all other rows are positive;

• the absolute values of each non-zero entry are mutually independent variables distributed accord-
ing to Nf(0, 1).

Note that any set of (m + k) rows (not containing the (n + 1)-st row) is linearly independent with
probability 1.
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5. Let T be a (n+k+1)×(n+k+1) positive diagonal matrix. I.e. the entries of T are strictly positive on
its main diagonal, and 0 elsewhere. Each entry tii on the main diagonal is obtained by independently

sampling u1, . . . , un+k from N (0, 1) and putting tii =
√
u21 + · · ·+ u2n+k.

6. Let π be a random permutation of n+ k + l + 1 elements.

7. Let A′ = norm(C(T |V )π). Output A′, π(n) and π(n+ 1).

In public domain, solve the linear programming task

minimize yπ(n), subject to A′y = 0,y ≥ 0, yπ(n+1) = 1 . (3.1)

In private domain, select the optimal solution yopt for (3.1). To recover the optimal solution xopt of the
original problem in the private domain, compute yoptπ

−1, take the first n elements, and multiply them by
t · T−1, where t is the entry in the (n+ 1)-st row and column of T (the multiplication by t is needed since
t · t−1 = 1, and the variable that is associated with the b vector is not being scaled).

3.1.3 Correctness

Consider the following three linear programming problems:

minimize yn subject to C(T |V )y = 0, yn+1 = 1,y ≥ 0 (3.2)

minimize zn subject to Cz = 0, zn+1 = 1, z ≥ 0 (3.3)

minimize xn subject to Ax− bxn+1 = 0, xn+1 = 1,x ≥ 0 (3.4)

The RREF of A′ obviously does not change the feasibility of any solution y. When discussing the correctness
of the scheme, we can also discard the permutation π. The correctness of the scheme thus means that the
first n elements of an optimal solution to (3.2), multiplied by t · T−1, are an optimal solution the original
linear programming task, which is obviously equivalent to (3.4). Consider the null space of C(T |V ). It is
generated by the rows of the following matrix(

T−1 · C⊥ 0

−V T I

)
. (3.5)

A linear combination of the rows of (3.5) is a feasible solution to (3.2) iff its (n+1)-st entry is 1 (corresponding
to the requirement yn+1 = 1) and all other entries are non-negative. This implies that l lower rows (below
the line in (3.5)) must have non-negative coefficients in such a feasible linear combination. On the other
hand, decreasing the coefficients of l lower rows will improve the value of the objective function yn — the
n-th column of −V T contains only positive numbers. Also, decreasing the coefficients of l lower rows does
not make the linear combination of the rows infeasible: it increases the values in first n entries and the
entries (n+ 2) to (n+ k + 1), because all entries of −V T are negative. The decreasing of the coefficients of
l lower rows also does not change the (n+ 1)-st entry of the linear combination because −V T has zeroes in
that column. Hence the lower l rows have their coefficients equal to 0 in any optimal solution to (3.2).

Thus the optimal solutions to (3.2) are obtained from the optimal solutions of (3.3) by multiplying
them with (1/t) · T and appending them with l zeroes. The null space of C is generated by the rows of
(A| − b)⊥| 1τ (A| − b)⊥DT. Again, a feasible solution to the linear programming problem (3.3) is obtained
as a linear combination of the rows of this matrix, where the (n+ 1)-st entry equals 1 and all other entries
are non-negative. In our case, the condition “all other entries are non-negative” can be replaced with
the condition “the first n+ 1 entries are non-negative”, because the (n + 2)-nd and following entries are
non-negative linear combinations of first n+ 1 entries.

The feasible solutions for the original problem (3.4) are obtained as linear combinations of the rows of
the matrix (A| − b)⊥, where the (n+ 1)-st entry equals 1 and all other n entries are non-negative. This is
the same condition as for the feasible solutions of (3.3). As the objective functions are also the same, we
conclude that the optimal solutions to (3.4) and (3.3) coincide in their first n components.
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3.1.4 Security

3.1.4.1 Definition

Our security definition for the transformation looks standard. The adversary communicates with the en-
vironment and attempts to guess a bit b chosen by it. First, the adversary chooses the dimensions m and
n, and two instances of linear programming tasks A0,b0 and A1,b1 that share a common optimal solution
xopt (recall that the objective function to minimize is xn). The adversary sends m,n,A0, A1,b0,b1,xopt

to the environment. The environment checks that xopt is an optimal solution to both linear programming
tasks, performs the transformation on the task Ab,bb and sends the transformed problem back to the ad-
versary. The adversary attempts to guess b. Its advantage is equal to its success probability minus 1/2. The
transformation is secure if no polynomial-time adversary has non-negligible advantage.

3.1.4.2 Hardness assumption

Atallah and Frikken [1] have defined the following Strong Secret Hiding Assumption (SSHA):

Assumption 3.1.1. Let V be a m×n Vandermonde matrix over a finite field Fq (here m < n). Let S be a
random m×m invertible matrix, R a random m×n′ matrix and R′ a random m× (n+n′) matrix over Fq.
Let π be a random permutation of n+ n′ elements. Then (SV |R)π ≈ R′, where the probability distributions
are defined through the random choices in selecting S, R and R′.

Atallah and Frikken postulate that to distinguish (SV |R)π from the completely random matrix R′, one
has to locate a set of (m+ 1) columns in (SV |R)π that correspond to columns in V (these sets of columns
are called special). They note that any set of at most m columns of (SV |R) is distributed identically to a
random m×m matrix. At the same time, special sets of (m+1) columns are an exponentially small fraction
of all sets of (m+ 1) columns.

How does the distinguisher recognize that a set of (m+1) columns is special? Any set of (m+1) columns
is linearly dependent, but for a special set, there is a linear combination with special coefficients (following
from V ) of these columns that is equal to 0.

We also note that as V is a matrix with full rank, there exists a n× n′ matrix W , such that SVW = R.
Thus (SV |R)π can be rewritten as S(V |VW )π. Finally we note that multiplication by a random invertible
matrix cannot be more “hiding” than bringing the matrix to RREF. Noticing these things, and generalizing
from finite Fq to real numbers, motivates us to state the following hardness assumption.

Assumption 3.1.2 (SSHA for R). Let C be a m×n matrix over R (here m ≤ n), such that any k columns
of C are linearly independent. Let R be a random n×n′ matrix and R′ a random m×n matrix over R. Let
π be a random permutation of n+ n′ elements. Then norm((C|CR)π) ≈ norm((R′|R′R)π).

In order to distinguish M = norm((C|CR)π) (with known C) from M ′ = norm((R′|R′R)π), one could
again look for a special set of columns in the resulting matrix. As any k columns of C are linearly indepen-
dent, any k columns of M will look like columns of a random matrix in RREF. To identify a special set of
columns, it is necessary to find k + 1 columns from among n+ n′ that all came from C. In other words, it
is necessary to find a (k + 1)-element subset of π−1({1, . . . , n}). There are

(
n
k+1

)
such special subsets. In

total, there are
(
n+n′

k+1

)
sets of k+ 1 columns, special or not. The probability of a randomly chosen subset to

be special is(
n
k+1

)(
n+n′

k+1

) =
n!(n+ n′ − k − 1)!

(n− k − 1)!(n+ n′)!
=

(n− k)(n− k + 1) · · · (n+ n′ − k − 1)

(n+ 1)(n+ 2) · · · (n+ n′)
≤
(

1− k + 1

n+ n′

)n′

,

which approaches 0 exponentially fast, if n→∞ and k, n′ ∈ Θ(n).

The assumption 3.1.2 does not yet seem to be sufficient to show the security of our problem transfor-
mation. Indeed, we have required the entries of the matrix R to have specific signs. This will not invalidate
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the analysis above on the difficulty of finding a special set of columns, but opens up possible new attack
vectors that are not present in finite fields.

A further problem with assumption 3.1.2 is, that it does not consider the relative sizes of the entries in
C, R′ and R. This may allow to distinguish the matrices in ways that rely on specific inequalities between
the entries of the matrix that is made public. These ways to distinguish do not have any counterparts when
considering finite fields.

Assumption 3.1.3. Let τ be a positive real number. Let D be the distribution Nf(0, 1). Let C be a m× n
matrix over R (here m ≤ n), such that any k columns of C are linearly independent and all columns of C
have the same `2-norm τ . Let Q ⊆ {1, . . . , n}, such that |Q| is constant (i.e. does not depend on m or n).
Let R be a random n× n′ matrix, where an entry in the i-th row is 0 if i ∈ Q, and distributed according to
D otherwise. Let R′ be a random m× n matrix, such that all columns of R have the same `2-norm τ . Let
T be a random n × n positive diagonal matrix over R, where each entry on the main diagonal is generated
according to the distribution √

D2 + · · ·+D2︸ ︷︷ ︸
n−|Q|

. (3.6)

Let π be a random permutation of n+ n′ elements. Then norm(C(T |R)π) ≈ norm(R′(T |R)π).

In order to distinguish M = norm(C(T |R)π) from M ′ = norm(R′(T |R)π), one could also consider
polytopes in n-dimensional space, specified by constraints that include the rows of C. E.g. one could
consider the vectors x ∈ Rn satisfying Cx = 0 and x ≥ 0. One could then consider the vertices of this
polytope and try to find similar-looking vertices of the polytope that is defined through My = 0 and some
inequality constraints on y. Of course, the equations and inequalities could be defined differently. E.g. one
could set xi = c for a particular i ∈ {1, . . . , n} and a particular constant c ∈ R. The distinguisher does
not know π(i) in order to also set yπ(i) = c, but it could try guessing it. The guess is correct with non-
negligible probability. A distinguisher with polynomial time-success ratio could make a constant number of
such guesses and thus could treat a constant number of columns of C somehow differently from others when
constructing the polytope that depends on C.

We believe that due to the scaling of the columns of C using the matrix T , the distinguisher is not
able to recognize the coordinates of a vertex of the polytope depending on C among the coordinates of the
corresponding vertex of the polytope depending on M . This assumption, however, is in need of further
study.

Why have the sizes and scaling factors in assumption 3.1.3 been chosen like that? Taking the RREF of a
matrix is at least as hiding as multiplying that matrix from the left with a random m×m (invertible) matrix
S. If all entries of S are mutually independently sampled according to the standard normal distribution
N (0, 1) then each entry of SC is distributed according to N (0, τ2). Each column of SC(T |R) is a linear
combination of the columns of SC. To make the columns of SC(T |R) indistinguishable by their sizes only,
we choose the entries of (T |R) (the coefficients of the linear combinations) so, that the variance of each
entry is roughly E[D] · (n− |Q|)τ2. As T and R have very different shapes, their entries have to be selected
from different distributions.

As the problem transformation also makes some points of π public, we need to strengthen our assumptions
a little bit more.

Assumption 3.1.4. Let τ , D, m, n, C, k, Q, n′, R, R′, T , π be the same quantities as in assumption 3.1.3.
Let P ⊆ {1, . . . , n}, such that |P | is constant. Then 〈norm(C(T |R)π), π|P 〉 ≈ 〈norm(R′(T |R)π), π|P 〉.

Here π|P denotes the list of pairs [(i1, π(i1)), . . . , (i|P |, π(i|P |))], where P = {i1, . . . , i|P |}. The opening
of some points of π does not seem to make distinguisher’s work much easier, as it could have guessed these
values of π itself (with non-negligible success probability). Still, as there does not seem to be a simple
method for the distinguisher to verify its guess, we do not know how to reduce this assumption to the
previous one.
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In stating these assumptions, the distinguisher itself is allowed to first generate the matrix C (and pick
the set of positions P ). The assumptions have been stated in the real-or-random sense [3]. An equivalent
statement in the left-or-right sense would be the following.

Lemma 3.1.5. For any probabilistic polynomial-time adversary A and c ∈ N, the probability of the following
experiment to output true is no more than 1/2 + negl(n).

1. Pick a random bit b
$← {0, 1}.

2. Obtain C0, C1, P,Q from A, where C0, C1 ∈ Rm×n, P,Q ⊆ {1, . . . , n}, |P | ≤ c, |Q| ≤ c and all columns
of C0 and C1 have the same `2-norm.

3. Let T be random n× n positive diagonal matrix, where each entry is sampled according to (3.6).

4. Let R be random n×n′ where the i-th row is 0 iff i ∈ Q and is sampled according to Nf(0, 1) otherwise.

5. Let π be a random permutation of n+ n′ elements.

6. Give norm(Cb(T |R)π) and π|P to the adversary A.

7. The adversary returns a bit b∗. Output whether b = b∗.

3.1.4.3 Security reduction

Assume that the transformation is not secure, i.e. there exists an adversary B that breaks the security
definition given in Sec 3.1.4.1, i.e. it can distinguish the transformed problem A0,b0 from the transformation
of A1,b1. In this case, we can build an adversary A breaking the Assumption 3.1.4 as follows. The adversary
A executes the following steps.

1. Invoke B and obtain the problem size m×n, the linear programming tasks A0,b0 and A1,b1, and the
common optimal solution xopt from it. Check that xopt is indeed an optimal solution to both linear
programming tasks.

2. Let k = n. Let D be a random k × (n + 1) matrix with non-negative entries, such that each set of k

columns of D is linearly independent and each column of the matrix
(
A|−b
D

)
has the same `2-norm τ .

3. For b ∈ {0, 1}, let Cb be the following matrix:

C =

(
A −b 0

D −τI

)
.

4. Let P = {n, n+ 1} and Q = {n+ 1}. Recall that the n-th column in C corresponds to the coefficients
of the variable xn, the value of which we try to minimize. The (n + 1)-st column corresponds to the
right-hand side −b of the system of constraints.

5. Let C ′b be obtained from Cb by negating the entries in the n-th column.

6. Submit C ′0, C
′
1, P and Q to the environment described in Lemma 3.1.5. Get back a matrix M (in

RREF) and the values π(n) and π(n+ 1).

7. Negate the entries in the π(n)-th column of M . Give the matrix thus obtained, as well as π(n) and
π(n+ 1) to B.

8. The adversary B returns a bit b∗. Output this bit.

It is straightforward to verify that the matrix M returned by the environment in step 6 is distributed
identically to the matrix obtained as the result of the problem transformation in Sec. 3.1.2, except for the
sign of the entries in the π(n)-th column. Hence the advantage of A in distinguishing instances of linear
programming tasks is equal to the advantage of B in breaking Assumption 3.1.4.
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3.1.5 Efficiency considerations

The operations performed in the private domain during the transformation described in Sec. 3.1.2 are
generally quite efficient in a typical SMC platform, e.g. Sharemind [6, 7], involving the generation of
random matrices and the multiplication of matrices. The transformation to RREF, however, is not so
efficient, involving comparisons of numbers and branching on results. Hence we may want to replace that
transformation with the multiplication with a random invertible matrix from the left. Our arguments in
Sec. 3.1.4.2 hint that the entries of this matrix may be sampled from N (0, 1).

3.2 Solving secure subset covering problem via a genetic algorithm

In this Section, we will consider the following problem setting. Let us have a target set T = {T1, T2, . . . , Tm}
and a covering set X = {X1, X2, . . . , Xn}. We are also given a binary relation covers between the elements
of these sets. This relation can be presented using a binary matrix A = (aij)

m,n
i,j=1 defined as

aij =

{
1 if the element Xj covers the elment Ti, and

0 otherwise.

In this way, each element Xj of X is identified with a subset of T .
As input, we are given the characteristic vector t ∈ {0, 1}m, and our aim is to generate an output

characteristic cover vector x ∈ {0, 1}n, so that the subset of T characterized by t would be covered by the
subset of X characterized by x. Alternatively, we can write this requirement as

Ax ≥ t . (3.7)

Additionally, we are given a vector of (non-negative) costs c = (c1, c2, . . . , cn)T , where cj can be inter-
preted as the price to pay for selecting the element Xj into the cover. Our optimization task is to minimize
the overall cost of the cover, i.e.

min c · x = min
n∑
j=1

cj · xj . (3.8)

The equations (3.7) and (3.8) together also specify a certain kind of linear programming problem known
as 0-1 linear programming, or binary (integer) linear programming problem (BIP). We will consider secure
BIP in the setting where the matrix A and the cost vector c are public, but both t and x must remain
secret. As an example of such a setting we may consider the situation, where the elements Tj represent
potential threats against an information system, and the elements Xi are the possible countermeasures, each
of which may be effective against certain threats. We do not want to disclose the vulnerabilities the system
may have, nor the selected countermeasures to the outside observers, but we nevertheless want to select the
countermeasure set to be as cheap as possible.

Even though BIP is a special case of linear programming, generic linear programming methods (like
simplex algorithm) generally fail to solve it well since they do not take the 0-1 restriction into account. BIP
can be solved by branch-and-bound type of algorithms like Balas Additive Algorithm [2]. However, in order
to efficiently prune the search tree, such methods need to make decisions on control bits, and their runs
differ on different input data. This kind of behaviour is unwanted in a privacy-preserving algorithm, as the
running time of the program could be used to infer details about the private inputs.

Hence, we decided not to choose a branch-and-bound algorithm and take a totally different approach.
To solve the underlying BIP problem, we have implemented a genetic algorithm. This approach has several
advantages. First, we do not have to leak any bits, since the control flow does not depend on the private
inputs. Second, a genetic algorithm can be made to run for a predefined number of iterations or a predefined
amount of time. On the other hand, genetic algorithms are inherently heuristic and are not guaranteed to
produce the globally optimal result. Nevertheless, they have been proven to yield results good enough for
practical use.
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Algorithm 6: Basic genetic algorithm

Data: Vector t ∈ {0, 1}m of relevant threats; matrix A ∈ {0, 1}m×n of the correspondences between
the threats and countermeasures; vector c ∈ (Z232)n expressing the costs of countermeasures

Result: A set of k candidate countermeasure suites
1 Generate a random generation (x1,x2, . . . ,xk)
2 while there is time to compute do
3 For each pair of individuals xi and xj produce their offspring by crossover
4 For some offspring mutate some of their bits
5 Sort the offspring pool by the fitness c · x
6 Choose k fittest for the new generation (x1,x2, . . . ,xk).

7 end
8 return (x1,x2, . . . ,xk)

Genetic algorithms work on generations of individuals. In our case, the individuals are 0-1 vectors xi
corresponding to the candidate countermeasure suites. Each generation has k individuals where k is a
system-wide configurable parameter. Computation proceeds in iterations, where both the input and output
of each iteration is a k-element generation. General structure of the routine is presented in Algorithm 6.

There are several implementation details to fill in in the basic algorithm. We have to choose the size
of the generation, crossover strategy and mutation strategy. Since these parameters depend on each other
non-linearly, making the optimal choices is a highly non-trivial task.

For our demo application we ran tests with the size of the generation set to k = 8, 12, 16, 23, 32, and for
the number of iterations g = 5, 10, 20. We applied uniform crossover and mutated the bits of individuals
also randomly with the probability 2−s. The last two choices were made because of the need to hide
the control flow. Next to the uniform crossover, another frequently used strategy is one- or two-point
crossover. However, selecting a few random cutting points has no straightforward implementation in the
oblivious setting. At the same time, uniform selection between the parent genes is rather easy to achieve by
generating random selection vectors and performing n oblivious choices for each candidate offspring. Similar
reasoning applies to the mutation operation as well. In order to flip the bits of individuals with probability
2−s, we can generate s random bit vectors and multiply them bitwise. In our experiments we set s = 4
giving 6.25% of probability for any bit to be flipped.

The pool of candidates for the next generation consists of k members of the previous generation plus
(
k
2

)
of their offspring. Since technically, it is simpler to sort 2t elements, some of the offspring are discarded to
get the closest power of two for the pool size. E.g. when k = 8, we get the original pool size 8 +

(
8
2

)
= 36

and we drop 4 of them to get down to 32. For k = 12, 16, 23, 32, we sort arrays of size 64, 128, 256, 512,
respectively.

In order to select the k fittest individuals, several steps need to be taken. First, for every candidate
vector we need to verify the matrix inequality in Equation 3.7, and if it is not satisfied, we obliviously assign
a very high cost to this vector. Next, we need to sort all the candidate vectors by the costs. Full sorting
is a rather expensive operation, and it is not really needed for the purposes of genetic algorithms. Hence,
we decided to implement Swiss tournament sorting. It is known that this sorting method works better in
both ends on the sorted array, whereas the middle part is not guaranteed to be linearly ordered [10]. In our
case, we obliviously evaluate as much of the the Swiss tournament sorting network as is needed for finding
the top k elements. However, our experiments show that compared to full sorting, the degradation of the
precision of the whole genetic algorithm is rather small, but the gain in computing time is significant.

3.3 Finding the shortest path in a graph

In this Section, we apply a genetic algorithm similar to the one described in previous Section to find a
shortest path in a given directed graph. As a starting point, we use the following linear programming
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formulation of the shortest path problem1:
Given a directed graph (V,A) with source node s, target node t, and cost wij for each arc (i, j) in A,

consider the program with variables xij : minimize
∑

ij∈Awijxij subject to x ≥ 0 and for all i,

∑
j

xij −
∑
j

xji =


1, if i = s;

−1, if i = t;

0, otherwise.

(3.9)

This gives us a binary linear programming problem and a cost function to optimize. We will first tackle
the single pair shortest path problem SPSP (s, t) as described in Deliverable D4.1 [11]. In our privacy-
preserving implementation, the source and target nodes s and t are secret. However, the total number of
vertices n in the graph is public knowledge. Input graph G is split into two matrices: a public boolean
adjacency matrix S showing the structure of the original graph and a private (secret shared) matrix W
holding the weights (costs) of edges. Holding the graph structure separately as a boolean matrix allows us
to ignore the graph structure while performing randomized operations, e.g. generating the initial generation
or applying mutations. When computing the cost of an individual or determining if an individual is a valid
path from s to t, that is if equation 3.9 holds, we can then point-wise multiply the individual with the public
graph structure matrix to eliminate all edges that might have appeared outside the original structure of G.
Since S is not secret shared, this multiplication is a local operation that requires no network communication
if we use a linear secret sharing scheme. Note that the structure of the graph could also be given as secret
input. However, removing edges outside the actual graph structure then requires multiplication of secret
shared values, which in turn requires network communication. All the intermediate results in the algorithm
are secret shared, including the final list of individuals.

The basic genetic algorithm used to solve this problem is the same as Algorithm 6 in Section 3.2.
However, instead of countermeasure vectors the individuals in this setting are graphs represented as n× n
adjacency matrices and the fitness function is based on the total cost (weight) of an individual matrix.

Computing the cost of an individual G is as simple as first point-wise multiplying the individual structure
graph with the original structure graph S to remove any non-relevant edges and then point-wise multiplying
again with the cost matrix W and summing all the values in the resulting graph:

cost(G) :=
∑

1≤i≤n

∑
1≤j≤n

Gi,jSi,jWi,j .

However, while determining which individuals are the fittest and should be carried over to the next
generation, we would actually want to consider only these individuals that contain a valid path from s to
t, that means the individuals where equation 3.9 holds. For all other individuals that do not match this
criteria, we would like to set cost(G) =∞ so they are less probable to be carried over to the next generation.
Computing row and column sums and their difference can be easily done in equation 3.9, however, oblivious
evaluation of the piece-wise function is a non-trivial task. In our implementation we obliviously build an n-
element mask vector that is filled with zeros except at positions s and t where there are 1 and −1 respectively.
This mask vector is then point-wise compared against the vector of row and column sum differences. If the
two vectors are equal, we set a comparison bit b equal to one and zero otherwise. For a given individual G,
we set its actual cost c obliviously as:

c = b · cost(G) + (1− b)∞.

Another problem with the equation 3.9 is that other than the actual path from s to t, it only allows a
graph G to contain closed cycles. This greatly affects the performance of the algorithm as we will throw
away individuals that contain the correct path but also have a few non-relevant edges. However, such
individuals may in fact be the best candidates as they are close to the optimal solution. To also consider
such individuals, we must come up with a different privacy-preserving way to check the existence of a valid
path.

1Shortest path problem – http://en.wikipedia.org/wiki/Shortest_path_problem#Linear_programming_formulation
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Chapter 4

Privacy-preserving network management
and operation

Applications described in Section 3.6 of Deliverable 4.1 [11] require identifying links among vertices in a
network. These links can represent routing paths or intrusion detection events. This problem can be formally
phrased as finding the transitive closure of a graph.

For simplicity we focus on a scenario involving only two parties. Each party Pk owns a graph Gk =
(V,Ek), consisting of a set of vertices V and directed edges Ek ⊆ V × V . Notice that the set of vertices is a
piece of information shared between the two parties. Let G be the union of the two graphs (G = (V,E1∪E2)),
the transitive closure of G is a graph G∗ = (V,E∗) with (i, j) ∈ E∗ if there is a path from the vertex i to
the vertex j in G.

Xiaoyun et all. [14] proposed a solution based on adjacency matrix multiplication. Let Adj be the
adjacency matrix of the graph G (Adj[i, j] = 1 if (i, j) ∈ E otherwise Adj[i, j] = 0) and n be the number
vertices, then Adjn computes the adjacency matrix of G∗. More precisely, Adjn[i, j] 6= 0 iff there exists a path
from the vertex i to the vertex j in graph G. The proposed solution is based on an iterative multiplication
algorithm (Adj2m = Adjm · Adjm) that requires log2 n iterations, each of them consisting of two secure
multiplications of n × n matrices. At each round each party obtains a n × n matrix consisting of random
shares of the global adjacency matrix. At the end of the computation, the parties can share their results to
obtain the transitive closure.

Algorithm 7: Transitive closure algorithm

Data: Party Pk has input Adjk
1 P2 generates a random invertible matrix R
2 P2 generates a random n−squared coefficient matrix C
3 P2 computes Adj′2[i, j] = C[i, j] ·Adj2[i, j] for all i, j ∈ {1, . . . , n}
4 P1 obtains the matrix S = R(Adj′2 +Adj1)R

−1

5 P1 locally computes T = Sn = R(Adj′2 +Adj1)
nR−1

We propose an asymmetric protocol for the two-party case (Algorithm 7). The algorithm requires secure
multiplication and addition of matrices at the step 4. This algorithm step can be accomplished exploiting
the existing techniques (e.g. using the matrix multiplication algorithm based on homomorphic encryption
proposed by Xiaoyun et al.). However, the matrix exponentiations can be performed by the party P1 without
involving the other party. At the end of the algorithm three scenarios are possible:

• The transitive closure is delivered to a third party for independent analysis. If the third party is
allowed to discover (Adj′2 +Adj1)

n, then the two participants send it the matrices T and R.

• If the party P2 is allowed to discover (Adj′2 +Adj1)
n, then P1 sends the matrix T to P2. The party P2

can compute (Adj′2+Adj1)
n as R−1TR and send back the normalized adjacency matrix (A | A[i, j] = 1
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if (Adj′2 + Adj1)
n[i, j] 6= 0 else 0) to the party P1. Notice that P1 may not obtain (Adj′2 + Adj1)

n,
otherwise it could compute the matrix R.

• The two parties perform a further secure matrix multiplication to obtain A1 and A2 such that A1+A2 =
R−1TR. The obtained shares are used as input to a garbled circuit that computes the normalized
adjacency matrix A | A[i, j] = 1 if (A1 +A2)[i, j] 6= 0 else 0.

We plan to implement the three proposals on the Sharemind system in order to compare their performances.
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