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Executive Summary:
Review of the state of the art in secure multiparty computation

This document summarizes deliverable D2.1 of project FP7-284731 (UaESMC), a Specific Targeted Research
Project supported by the 7th Framework Programme of the EC within the FET-Open (Future and Emerging
Technologies) scheme. Full information on this project, including the contents of this deliverable, is available
online at http://www.usable-security.eu.

This report contains a review of the current state of the art of cryptographic techniques for secure
multiparty computation. It focuses on the variety of techniques, not the problems that can be solved with
it. For each technique, we characterize its costs, and the security properties achievable with it. As such,
the report provides a basis for the further work in the UaESMC project. As the work in the project is at
the point where these techniques are just about to start being applied, no conclusions are provided in this
report.

This report is the initial version of the working document Challenges, bottlenecks, and breakthroughs,
maintained by the scientific coordinator of the project and summarizing the state of the art in secure
multiparty computation, achieved in- and outside of UaESMC so far. Further versions of this document will
be used to prioritize and direct the research effort towards the various approaches investigated by UaESMC.
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Chapter 1

Introduction

The goal of the UaESMC project is to push the state of the art in the secure multiparty computation (SMC)
to a level above the threshold for applicability in many different sectors of the society. It achieves that goal
through the identification of common problems in practical applications, and through solving them using
cryptographic, game-theoretic and engineering means.

This deliverable gives an overview of the existing cryptographic techniques of SMC. It covers different
data representations in secure computations and different SMC frameworks (different sets of protocols work-
ing on the same data representation). This deliverable also reviews specific techniques for certain tasks that
are more efficient than the application of general techniques. As such, it will serve as a reference of existing
methods and techniques for the subsequent work in this project.

The deliverable attempts to characterize different techniques in terms of the security guarantees they
provide, as well as in terms of their complexity (computation, communication bandwidth and rounds). The
deliverable also attempts to give a high-level overview of the technical details, and provide concrete pointers
for further study.

In Chapter 2 of this deliverable we outline the different security definitions for multiparty computa-
tion. We consider the difference between stand-alone and composable protocols, as well as between different
attacker models (semi-honest, consistent and malicious). Chapter 3 reviews the main frameworks for stan-
dalone and Chapter 4 for composable SMC protocols (although the distinction is not complete). In Chapters
5 and 6 we review specific efficient techniques for particular tasks. Chapter 5 in particular concentrates on
the technique of server-assisted secure computation; we have singled out this technique because we believe
in its wide applicability in securely solving practical problems.

Being targeted towards the performers of UaESMC, this report does not aim to be completely self-
contained. We assume certain familiarity with common building blocks of cryptographic protocols, including
homomorphic encryption and oblivious transfer.

This deliverable does not provide any conclusions, because at this point in the UaESMC project, there
cannot be any. Instead, it will serve as one of the knowledge bases for the work that is going to be performed
in this project.

This document will continue its life after its submission to the EC. It will be updated with new results in
SMC, cryptographic or otherwise, achieved in the UaESMC project and elsewhere. As such, it will become
the working document Challenges, bottlenecks, and breakthroughs, used as the basis for the direction of the
research effort towards the various approaches investigated by UaESMC. It shows where the most gains can
be made with the least effort, and which problems must be overcome or worked around in order to achieve
the project’s objectives. To keep the document updated, we will monitor top-tier conferences in security,
cryptography and game theory, as well as preprint archives for new results in this area.
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Chapter 2

Definitions

In this chapter, we review the security definitions of secure multiparty computation. The security require-
ments are stated through the ideal/real system paradigm, stating that a protocol is secure if it cannot in
some sense be distinguished from an ideal functionality.

2.1 Adversary model

In this work we will model all adversarial behavior in a given protocol as one adversary that can corrupt
one or more parties, see their private inputs/outputs and control their behavior. A coalition of dishonest
parties that collude and exchange data, is considered as a single adversary.

In a large scale, we can talk about two groups of adversarial behavior:

• A passive adversary is able to gain access to all private inputs and outputs of the corrupted party,
but the party still follows the protocol. Such party is called semi-honest or honest-but-curious. A
semi-honest party tries to use all available to information to break the confidentiality of the protocol,
but it does not deviate from its specification.

• An active adversary takes full control of the corrupted party. Such malicious party does not follow
the protocol but rather obeys the adversary.

In general, protocols against passive adversaries have simpler structure and require less computation and
communication. Hence the “default” setting in this report is that of semi-honest parties. Protocols that are
secure against active adversaries are much more complex, requiring commitment schemes, zero-knowledge
proofs, etc.

This kind of active adversary may seem too strong and protocols secure against such adversarial behavior
are often too complex. Laur and Lipmaa [44] introduced a new concept – consistent computations – which
means that malicious parties cannot learn anything beyond their intended output and honest parties can
detect malicious behavior that alters their outputs. Hence, a valid corruption complain reveals only a single
bit of information about the inputs of honest parties. Using this model, it is possible to construct more
efficient protocols than for the classical active adversary.

2.2 Protocol security

The security of multiparty computation can be formally defined through the ideal/real system paradigm. An
ideal system contains a trusted third party that privately interacts with all parties, collects their inputs, does
the necessary computations and distributes parties’ outputs. This model can also incorporate adversarial
behavior. The real model has no such party. A protocol (in the real model) is secure if whatever an adversary
can accomplish in the real world, can be simulated in the ideal world by constructing a suitable ideal-world
adversary. Thus, the security in the ideal setting is no stronger than the real protocol is able to provide.
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This framework was introduced independently by Canetti [15, 16], and Pfitzmann and Waidner [62] and is
largely used in protocol security proofs.

Let us have an ideal functionality F of a task that specifies the actions of the trusted third party and
the security requirements. Let φ be an ideal protocol that realized this task using F in the ideal world. The
protocol φ has a very simple structure: the n parties of the protocol receive their inputs from the outside
(from the environment Z described below), hand them over to F , receive F ’s output and forward them to
the outside. In the real world we have a protocol π that emulates φ for F . We also have an adversary A
that is able to control the communication of parties of π and can corrupt some of them. The amount of
control A has over corrupted parties models whether the adversary is passive or active. On the other hand,
in the ideal setting φ is coupled with a simulator S that gets the state of the corrupted parties and other
leaked information from F and tries to emulate the behavior of A. The simulator S may corrupt some of the
parties of φ; the corrupted parties no longer forward messages between the outside environment Z and the
ideal functionality F , but yield to the complete control of S. In both worlds there is also an environment
Z that communicates with either π or φ to provide protocol inputs and collect outputs. At the same time
Z also talks to A or S as part of the attack against the protocol. Hence, in the real world, the adversarial
entities Z and A can cooperate and coordinate their activities.

We say that the real protocol π is at least as secure as the ideal protocol φ if for all adversaries A there
exists a simulator S, such that no environment Z can distinguish whether it is running together with π and
A (real world) or with φ and S (ideal world). From this definition we see that in order to prove some π at
least as secure as φ, it is necessary to show the existence of S, given A. Most commonly, the proof consists
of the construction of a machine Sim, such that for any A, the composition of A and Sim is a suitable S.

2.2.1 Basic SMC functionality

In the most simple case let us consider secure function evaluation (SFE), where each party Pi (i ∈ {1, . . . , n})
holds an input value xi and receives an output value yi. For a function f we can write this as

(y1, . . . , yn)← f(xi, . . . , xn).

We can now consider an ideal functionality Ff that has private point-to-point communication channels to
all of the n parties and to the simulator. The functionality Ff receives the inputs xi from the n parties.
Note that if a party is uncorrupted, then its input originates from Z, while for a corrupted party, the input
originates from S. After receiving the inputs, Ff expects the command “compute!” from S. After receiving
that, it computes y1, . . . , yn and hands them over to respective parties. Again, note that if the i-th party is
uncorrupted then yi is forwarded to Z. If i-th party is corrupted then yi is given to S, which also picks the
value that is given to Z.

2.2.2 An arithmetic black box

Damg̊ard and Nielsen [23] propose a slightly different ideal functionality for characterizing the security
of multiparty computation. Their construction does not just provide secure function evaluation, but is
equivalent to something that they call the arithmetic black box (ABB). An ABB can be thought as a secure
general-purpose computer. Any party can give private inputs to the ABB and any majority of parties can
ask it to perform any feasible computation. The result of that computation is stored in the internal state of
the ABB and can be used as an input to subsequent computations. Any value stored in the ABB is made
public only if a majority of parties explicitly ask for it.

In their construction the execution of the protocol π happens in the presence of environment Z that also
models the adversarial behavior. The environment Z also sees the messages exchanged between parties. The
corresponding ideal functionality F has private communication channel with all of the parties and special
channel to S that is used to receive information about corrupted parties and leak data.

The arithmetic black box is an ideal functionality FABB. In each activation, FABB expects a command
from all honest parties and executes it iff all honest parties agree. The command can be one of the following.
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• Input private data. One of the honest parties performs the command (x ← v), where x is a variable
and v is a value. Other honest parties are expected to perform the command (x ←?). As the result,
the variable x is added to the internal state of ABB and its value will be v. If x was already contained
in the state then its value is updated to v.

• Compute. All honest parties have to perform the command (x ← ⊗(x1, . . . , xk)), where x, x1, . . . , xk
are variables and ⊗ is an arithmetic operation. The ABB is parameterized with the set of arithmetic
operations it is capable to perform. Typically, these are addition, multiplication with a constant,
multiplication, comparison (returning either 0 or 1), etc. In practice, the set of available operations
depends on the efficient protocols that are or are not available for various computations. The variables
x1, . . . , xk must be defined. The variable x is added or updated to the internal state of ABB, receiving
the result of the computation.

• Output. All honest parties have to perform the command (← x), where x is a variable that has been
defined in the internal state of ABB. As the result, the value of x is made available to all parties.

If two honest parties disagree, then FABB gets corrupted, meaning that it will output the entire current
state and all future inputs on the special channel to leak data. Also, it lets the environment Z decide all
the future inputs via the special channel.

The availability of a protocol securely realizing FABB makes the implementation of any secure computa-
tion protocol conceptually simple — just perform all computations inside FABB. However, the efficiency of
such solution may be unacceptable. It is important to come up with methods to combine FABB with specific
protocols for particular subproblems, in order to obtain a more efficient solution.
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Chapter 3

Generic Constructions of Protocols

There exist several generic constructions for SMC protocols that receive as input a description of some
algorithm and the distribution of the inputs to that algorithm among the data owners, and output the
description of a secure protocol that executes that algorithm in a privacy-preserving manner. The goal of
this chapter is to give an overview of these constructions.

In this chapter, the considered computational task, given by the algorithm description, is non-interactive,
i.e. all inputs are received at the beginning of the computation and the parties do not decide on the next steps
during the computation; based on what has already been computed. Secure methods for such computations
are reviewed in Chapter 4. In terms of ideal functionalities and their realizations, this chapter considers
various constructions that, on input of the description of a function f with n inputs and outputs, construct
a protocol πf that securely realizes the ideal functionality Ff . Some constructions put extra requirements
on the function (e.g. all n outputs must be the same), but these are usually easy to overcome with standard
techniques (masking).

3.1 Yao’s garbled circuits

This construction is inherently a technique for two-party computation (although generalizations to multiple
parties exist, too [8]). Let us assume that we have two parties P1 and P2 who want to compute an arbitrary
functionality f(x1, x2) = (y1, y2) so that Pi holds the input xi and at the end, receives the output yi
(i ∈ {1, 2}). We assume that the functionality f is a boolean circuit and inputs x1 and x2 are bitstrings.
In Yao’s construction [75], P1 encrypts (“garbles”) the circuit to preserve the privacy of the input values.
For each wire in the circuit, two random values are chosen, one representing 0 and another representing 1.
For a gate g with inputs b1 ∈ {0, 1} and b2 ∈ {0, 1}, the random values of input wires of g corresponding to
each pair of the values of b1 and b2 are used as keys to encrypt the value corresponding to g(b1, b2) of the
output wire of g. Each gate’s computation table is also randomly permuted, so that it maps random inputs
to the corresponding random output. P1 constructs the garbled circuit and sends it to P2 together with its
encrypted inputs. While evaluating the garbled circuit, P2 uses 1-out-of-2 Oblivious Transfer (OT) for each
of its input bits to get the corresponding encrypted input value from P1.

An in depth description of this method and its security proof is given in [46].

3.1.1 Evaluation of Yao’s circuits

Schröpfer and Kerschbaum have put together a detailed analysis of the running time of creating and eval-
uation Yao’s garbled circuits. They do so by combining time complexities of necessary primitives. In the
following, we give an overview of their results, but for a more in-depth description, we refer the reader to
the original paper [67].

Table 3.1 lists the parameters that are used in the performance equations.
In [67], Yao’s circuit evaluation is split into five steps and time-complexity is given separately for each

step. The total evaluation complexity is a sum
∑5

i=1 ti.
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Parameter Description

Input/output:
l bit-length of an input or output value
ρ party, ρ ∈ {P1, P2}
αρ number of private inputs for ρ
βρ number of private outputs for ρ
ng number of gates in the binary circuit

Secure computation:
kOT key-length of Oblivious Transfer
kGC key-length of garbled circuit

System:
tρRND(n) time in [ms] to select n random bits
tρMUL(n) time in [ms] to multiply two n-bit numbers
tρPOW (n) time in [ms] for one modular exponentiation of two n-bit numbers
tρINV (n) time in [ms] to compute one modular inverse in a field of n bits
tρOWH(n) time in [ms] for hash function of one n-bit number
tLAT network latency in [ms]
b network bandwidth [Mbit/s]
rtLAT ,b(n) transfer rate in [Mbit/s] for n bits (depends on latency and bandwidth)
MTU maximum number of bits of payload per network packet

Table 3.1: Parameters for evaluating the performance of garbled circuits

1. Garbling the circuit:

t1 = 2nwt
P1
RND(kGC),

where nw = αP1 + αP2 + ng is the number of wires in the circuit.

2. Encrypting the output values of garbled truth tables:

t2 = 4ngt
P1
OWH(kGC).

3. Encrypting and transmitting the inputs of P2 using 1-out-of-2 OT:

t3 = αP2 ltOT ,

where tOT is the time necessary for one 1-out-of-2 OT. For the protocol in [52] it can be estimated as

tOT =2tP1
MUL(kOT ) + 5tP1

POW (kOT ) + tP1
INV (kOT ) + 4tP1

OWH(kOT )+

tP2
MUL(kOT ) + 2tP2

POW (kOT ) + tP2
INV (kOT ) + 2tP2

OWH(kOT ) + 4tLAT .

4. Sending the encrypted circuit, P1’s encrypted inputs and output keys to P2:

t4 = (ni + nt + no) · rtLAT ,b(ni + nt + no),

where ni = αP1 lkGC denotes the bits for P1’s encrypted input bits; nt = 4ngkGC denotes the bits for
the encrypted circuit; and no = 2βP2 lkGC is the bits for the output keys.

5. Circuit evaluation by P2 and returning P1’s encrypted output:

t5 = ngt
P2
OWH(kGC) +

⌈
βP1 lkGC
MTU

⌉
tLAT .
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3.2 Private Branching Programs

In this Section we describe private branching programs and its prerequisite, computationally-private infor-
mation retrieval. Both definitions are given by Lipmaa [48].

Computationally-Private Information Retrieval. In a 1-out-of-n computationally-private informa-
tion retrieval protocol, (n, 1)-CPIR, for l-bit strings, the client has an index x ∈ {0, . . . , n−1} and the server
has a database f = (f0, . . . , fn−1) of l-bit strings. The client obtains fx. In the following we need a CPIR
protocol that has the next property. We say a CPIR protocol Γ is private branching program friendly if it
satisfies the next three assumptions:

1. Γ has two messages, a query Q(l, x) from the client and a reply R(l, f,Q) from the server, such that
the stateful client can recover fx by computing A(l, x, R(l, f,Q)).

2. Γ is uniform in l, that is, it can be easily modified to work on other values of l.

3. There exists a compress function C that maps Q(l′, x) to Q(l, x) for any l′ ≤ l and x.

More formally, Γ = (Q,R,A,C) is a quadruple of probabilistic polynomial-time algorithms that satisfy
A(l, x, R(l, f,Q(l, x))) = fx, and C(l′, l, Q(l′, x)) = Q(l, x) for any l′ ≤ l and x. If the existence of C is not
required we also write Γ = (Q,R,A) even if C exists.

Private Branching program. A branching program [74] (BP) is an acyclic graph where the internal
nodes are labeled from some variable set {x0, . . . , xm−1}, the sinks (leafs) are labeled by l-bit strings and
the two output edges of each internal node are labeled by 0 and 1 respectively. Every source and every
assignment of the variables corresponds to one path from this source to one of the sinks as follows. The
path starts from the source. If the current version of the path does not end with a sink, test the variable at
the end of the path. Select one of the outgoing edges according to the value of this variable and append its
endpoint to the path. If the path ends with a sink, return the label of this sink as the value of the branching
program. Hence, a branching program with σ sources computes a function f : {0, 1}m → {0, 1}σl; by default
σ = l = 1.

One way to evaluate a branching program is to start from the sinks and end with the sources. Let v
be some node (labeled xi), such that the values Rvi of the end nodes of the outgoing ai-labeled edges are
known but the value Rv is not yet known. Then one sets Rv ← Rvi = (Rv0 , Rv1)[i]. Thus, every node can
be seen as implementing a (2,1)-selector/branch operation. Ishai and Paskin [38] proposed a protocol for
cryptocomputing (that is, computing of ciphertexts) any function f by first fixing the input length m and
then designing an efficient branching program Pf for this length. Their protocol uses the private version
of evaluating a branching program explained here. There, all computations are done on “ciphertexts”, and
the local selector/branch operation Rv = (Rv0 , Rv1)[i] is implemented by using a communication-efficient
two-message (2,1)-CPIR protocol. More precisely, for client’s every input variable xi to f , the client sends
to the server the first message Qi of the underlying (2,1)-CPIR protocol. After that, the server recursively
computes the value Rv for every non-sink node of Pf as explained earlier. However, Rv is going to be equal
to the second message of the (2,1)-CPIR protocol that uses Qi and the database (Rv0 , Rv1). For a sink
v, Rv is just equal to its label. At the end, the server sends to the client Rv for every source v, and the
client applies recursively the local decoding procedure to each such Rv to obtain the value of the branching
program. We call this protocol PrivateBP. See [38] for an in-depth description about private branching
programs. Their results are slightly improved by [48].

In the case of branching programs, the amount of communication and client’s computation depend only
on the length (or depth) of the BP and are independent of the total size of the BP. This makes the described
approach useful for “wide” BP-s.
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3.2.1 Evaluating BP-s

In the case on PrivateBP, server holds a function f : {0, 1}m → {0, 1}σ` from some set of functions F ,
where all the functions can be computed by a branching programs of polynomial size. A client holds the
m-bit input. Let σ be the number of `-bit sinks of the corresponding branching program Pf . Also, let
len(Pf ) be the length (longest path) and size(Pf ) be the size of this branching program. Then we define
len(F) = maxf∈F len(Pf ).

Using Lipmaa’s (2, 1)-CPIR protocol [47]1 we can cryptocompute f(x) with a total complexity of Θ((m+
σ)(`+ len(F)k)), where k is a security parameter (key size). In this case client sends its public key and m
messages with size ≤ `(len(F) + 2)k, whereas the server responds with σ messages of the same size. The
computational complexity of the client is equal to the total communication cost and the computational cost
for the server is Θ̃(size(Pf )) [48]. Lipmaa also proposes a couple of BP balancing techniques [48], that bring
the total communication cost down to Θ((m/ log (m/σ))(`+ len(F)k)) or alternatively, (1 +o(1))σ`+ Θ(m ·
len(F)) · k.

3.3 Private Linear Branching Programs

Although in the case of BP-s the amount of communication depends only on the depth of the BP, the
evaluation protocol requires expensive homomorphic operations on ciphertexts. Furthermore, the server’s
computation still depends on the total size of the BP. To alleviate this, Barni et al. [7] introduces a concept of
linear branching programs (LBP) — a generalization of BP-s that unifies and extends the work of [43, 13, 64].
Analogously to the Yao’s garbled circuits, evaluating a LBP consists of three steps. First the server creates a
garbled LBP from th efunction description and sends it to the client. Then the client uses a special protocol
ObliviousLinearSelect to obtain garbled values which correspond to the outcome of the comparison of the
linear combination of the attribute vector for the threshold for each garbled node. This step is similar to
obtaining wire secrets osing OT in Yao’s garbled circuits. Finally, the client is able to evaluate the LBP
locally.

Barni et al. [7] give the size of the garbled LBP as well as the communication complexity of the
ObliviousLinearSelect protocol using garbled circuits (GC), oblivious transfer (OT) and homomorphic en-
cryption (HE) as building blocks. In both cases they also compare their results with the results of the work
they extend. Parameters used in the following tables: z: #nodes, d: #decision nodes, n: #attributes,
`: bit length of attributes, `′: bit length of thresholds (for LBP-s), t: symmetric security parameter, T :
asymmetric security parameter, κ: statistical correctness parameter.

Algorithm to create and evaluate garbled LBP Garbled LBP size in bits

[43, 13] 2z(dlog (z)e+ t+ κ)

[7] 2d(dlog (d)e+ t+ 1)

[7], tiny garbled LBP2 2ddlog (z − d)e

Oblivious selection Private Moves Asymptotic communication complexity
protocol function GC OT HE

[13] BP
OT + 2

12z`(t+ κ) OT z`t (n+ z)2T
[13], extended by [7] LBP 12z`′(t+ κ) OT z`

′
t

[7], hybrid
BP

OT + 2
12d`t OT d`t (n+ `

T−κd)2T

LBP 12d`′t OT d`
′

t (n+ `′

T−κd)2T

[7], circuit
BP

OT
4(n log (d) + 3d log (d))`t OTn`t

LBP 16nd(`2 + `′)t OTn`t
This construction of LBP-s is proven to be secure in semi-honest model, but can be also modified to

1Lipmaa’s (2, 1)-CPIR is currently the most efficient (2, 1)-CPIR for the purpose of PrivateBP protocol.
2Tiny LBP-s (d ≤ 10) result in substantially smaller communication complexity.
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achieve full security against malicious adversaries by using committed OT, secure two-party computation
on committed inputs and verifiable homomorphic encryption schemes (see [40] for details).

3.4 Private Boolean Circuits

Recently, Nielsen et al. [56] introduced a new OT-based two-party private boolean circuit evaluation tech-
nique that uses XOR-shared values. They build upon an OT extension by [37] that allows to turn κ seed
OTs based on public key cryptography into ` = poly(κ) number of OTs using only O(`) invocations of
cryptographic hash functions (e.g. κ = 640, ` = 220). To achieve security against active adversary, they
commit both parties to all of their shares and introduce the concept of authenticated OT. In the construction
they use slightly leaky proofs and get leakage probability of (2n)−B = 2− log2 (n)(B−1), where n is the number
of gates and B is the “bucket size” (the security parameter). For example, for n = 220 and B = 6, we get
leakage probability 2−100. The following table summarizes their results:

Gate Cost (calls to hash func.) Cost, optimized3

Input 59 8

AND 856B + 118 142B + 16

XOR free free

3These optimizations are not covered in [56] as the authors claim that they undermine the modularity of their constructions.
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Chapter 4

Virtual machine based constructions

This chapter gives an overview of composable techniques for secure multiparty computation. The protocols
described in this chapter work on private data that has been protected with a certain method; and produce
outputs that are protected using the same method. In this way, the outputs can be used as inputs in the
next protocol instance, and basic protocols for addition, multiplication, etc. can be composed to protocols
that privately compute more complex functions. The protocols given here can be used to implement the
ideal functionality FABB for various sets of commands.

Invariably, the protocol sets reviewed here are based on secret sharing or threshold homomorphic en-
cryption. A lot of material in this chapter is based on [1].

4.1 Multiparty computation based on Shamir secret sharing

In protocol sets based on Shamir’s secret sharing [68], a value a from a field Zq (q is a prime number) is
represented as [a] = ([a]1, . . . , [a]n), where n is the number of parties and [a]i = f(i) for some (t− 1)-degree
polynomial f over Zq, such that f(0) = a. For any set of t positions I = {i1, . . . , it} there are the Lagrange
interpolation coefficients rIi1 , . . . , r

I
it

, such that
∑

j∈I r
I
j [a]j = a for all a and f . If we want to represent m-bit

numbers a, then a, [a]1, . . . , [a]n must belong to some Zq, where blog qc = m. This will give us protocols
that are secure against passive adversaries controlling up to t− 1 parties. We assume m ≈ 100, because this
will make it easier to avoid overflows in computations, which are inconvenient to handle, because computing
modulo a prime number q is usually not something we want to do in our actual algorithms that we want to
implement in a privacy-preserving manner.

If we want security against active adversaries as well, then we have to commit to the coefficients of
the polynomial f . Typically, the security of the commitments is based on the discrete logarithm problem
and the commitments have to belong to a group where this problem is hard, e.g. Zp for some p, where
blog pc = k ≈ 1000. Alternatively, the group maybe over some elliptic curve, in which case the size of the
commitments k is comparable to the size of the shares m.

The following table describes the complexity (per party) of local operations. Here the computationally
secure commitments are those of Pedersen [61], while the unconditional commitments are again based on
secret sharing [17]

Operation Adversary/security Computation Comm. bw. Rounds

Addition (a+ b)
passive, uncond. O(m) (1 addition in Zq) 0 0
active, uncond. O(mn) (t additions in Zq) 0 0
active, comp. O(k2n) (t multiplications in Zp) 0 0

Mult. w/ const. (λ · a)
passive, uncond. O(m2) (1 multiplication in Zq) 0 0
active, uncond. O(m2n) (t multiplications in Zq) 0 0
active, comp. O(k3n) (t exponentiations in Zp) 0 0

14



UaESMC Deliverable D2.1 Review of the state of the art in SMC

Multiplication. Given two shared values [a] and [b], the goal of the multiplication protocol is to come up
with a shared value [c], such that c = ab mod q. With a semi-honest adversary, this is achieved by

• Each party Pi computing [a]i · [b]i and sharing it;

• The parties collectively picking a set I ⊆ {1, . . . , n} of size 2t− 1;

• The parties computing [c] =
∑

j∈I r
I
j [[a]j · [b]j ], where rIj are the Lagrange interpolation coefficients for

polynomials of degree 2t− 2.

If the adversary is malicious then the first step requires the party Pi to prove that it is indeed sharing the
value [a]i · [b]i. In the second step, the set I is picked from the set of the indices of the parties that have
provided a valid proof.

For semi-honest adversaries, the protocol requires one round, and the major part of computation for
each party is the sharing of the value [a]i · [b]i. This requires nt multiplications in Zq. The communication
cost for each party Pi is the sending out of n− 1 shares and receiving one share from each of the other n− 1
parties. For malicious adversaries, the protocols are much more expensive. In this case, each party Pi has to
commit to the value [a]i · [b]i (with a proof that it has been correctly computed; this is the most expensive
part) and show that it is indeed sharing that value.

Below, we are describing more complex computations with shared values. The computational and
communication complexity of these operations will be measured in “invocations”. One invocation is either
the multiplication of two shared values, or the generation of a shared random value (which is achieved by
each party generating a random value, sharing it with others, and the addition of these shared values) and
the subsequent opening of this or some other value.

Assume now that we are given an array of non-zero secret values [a1], . . . , [ak] and have to compute either
their product or prefix product, i.e. [pj ] =

∏j
i=1 [ai], for 1 ≤ j ≤ k. The two corresponding protocols are

[p]← Mult∗([a1], . . . , [ak]), and

([p1], . . . , [pk])← PreMult([a1], . . . , [ak])

Hence, Mult∗ is a special case of PreMult. Both protocols can be implemented with either variable on
constant number of rounds.

Operation Rounds Invocations Ref.

Mult∗
log (k) k − 1
6 5k [6]

after preprocessing 2 k

PreMult
log (k) 2k − log (k)
6 5k [6]

after preprocessing 2 k

Symmetric boolean functions. Let [b1], . . . , [bk] be an array of binary values bi ∈ {0, 1} ⊂ Zq, and
k < q − 1. We want to compute a symmetric boolean function of these variables, e.g. AND, OR, XOR.
The output of a symmetric boolean function depends only on the number of ones in input and not on their
location. The complexity of computing a symmetric boolean function is the same as for PreMult. Similarly
to PreMult, we can define functions PreAND and PreOR (in this case [a1], . . . , [ak] are secret bits). The
corresponding complexities are shown below:

Operation Rounds Invocations Ref.

Symm. bool. func. 6 5k
[21]

after preprocessing 2 k

PreAND, PreOR 12 12k + 5
√
k

[21, 70]
after preprocessing 8 4k +

√
k
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Bitwise shared integers. In this section we are working with bitwise shared secrets, denoted as [a]B =
([ak−1], . . . , [a0]), k = dlog qe.

Operation Rounds Invocations Ref.

BitLT([a < b]← BitLT([a]B, b)) 12 ≈ 13k
[21]

after preprocessing 8 ≈ 5k

BitLT([a < b]← BitLT([a]B, [b]B)) 14 15k
[21]

after preprocessing 10 7k

RandBitwise(([r], [r]B)← RandBitwise(), r ∈R Zq) 13 15k
[21]for statistical privacy 3 2k

after preprocessing 9 5k

AddBitwise ([s]B ← AddBitwise([a]B, [b]B), add in Zq) log (k) + 1 3k − log (k) [1]
22 28k log (k)

[21, 70]
after preprocessing 18 28k log (k)

BitDec ([a]B ← BitDec([a])) log (k) + 22 < 32k
[21, 70, 57]

after preproc. log (k) + 9 7k

Integer comparison. In the following, κ is the security parameter.

Operation Rounds Invocations Ref.

CompB ([a ≤ b]← CompB([a], [b])) 13 15k + 2κ
[70]

after preprocessing 9 5k

Comp ([a < b]← Comp([a], [b])) 25 84k + 5
[70, 57]

after preprocessing 12 12k + 5

EqualOpen ((a = b)← EqualOpen([a], [b])) 5 4
[1]

after preprocessing 2 1

Equal ([a = b]← Equal([a], [b])) 16 20k
[57]

after preprocessing 3 k

EqualB ([a = b]← EqualB([a], [b])) 7 7k + 2κ [1]
after preprocessing 3 k

EqualP ([a = b]← EqualP([a], [b]), k = #tests) 6 12k
[57, 70]

after preprocessing 3 2k

CompB is much more efficient than Comp, but works with bounded k-bit integers (k � log (q)) and offers
statistical privacy. The latter works with any integers in Zq (k = dlog (q)e) and provides perfect privacy.
Also, Comp can be modified to work with signed integers [1].

Similarly, EqualB works with k-bit integers represented as elements in Zq (k + κ < dlog (q)e) and offers
statistical privacy.

The protocol EqualP is probabilistic equality testing with success rate 1 if a = 0 and 0.5 if a 6= 0. EqualP
performs k independent tests in parallel, resulting in the reduced error probability 2−k.

Division. The general division protocol Div has two variants, one that uses exact computation when
shifting [a] down m bits; and another that approximates it. Θ-complexities of the respective protocols are
equal, but more details can be found in [30]. In the following, n is the number of players, the protocols use
k-bit integers, and ρ ∈ N is a security parameter.

Operation Rounds Communication Computation Ref.

Mod ([amodb]← Mod([a], [b])) O(1) O(kn) O(k2n+ kn2 lg n) per player [2]

Div ([a/b]← Div([a], [b]))
[30]preprocessing Θ(1) Θ(nk2 + nkρ) O(nk2) mult. in Zp per player

processing Θ(log (k)) Θ(nk log (k) O(nk2) mult. in Zp per player
+nρ log (k))
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Arrays of secrets. Let [A] denote an array of secret shared values:

[A] = ([a]1, . . . , [a]k),

where k is the number of elements in this array. We denote reading from and writing to the secret array
as [x] ← [A](i) and [A](i) ← [x] respectively. For reading from and writing to the i-th element of [A], we
construct a binary k-element vector [i]. This indexing vector if filled with shares of zeros ([0]), except in
one position where there is a share of one. This position corresponds to the j-th element that we want to
read/write, so [i](j) = [1].

Protocols MaxL, Max1 and MaxLL [70] find the maximum value in the array of secret shared values [A]
and return its secret shared index vector [i] so that [A]([i]) = max(A). In these protocols, cr stands for the
round complexity of the comparison protocol used.

Operation Rounds Invocations Ref.

[x]← [A]([i]) 1 k [70]

[A]([i])← [x] 1 k [70]

MaxL ([i]← MaxL([A])) log (k)(cr + 2) k − 1 comp. and 2k − 2 mult. [70]

Max1 ([i]← Max1([A])) < 2cr k(k − 1)/2 comp. [70]

MaxLL ([i]← MaxLL([A])) log log (k)(2cr + 2) k log log (k) comp. and 2k log log (k) mult. [70]

4.2 Multiparty computation based on additive secret sharing

The Shamir secret sharing scheme described in Section 4.1 works over finite fields. However, when imple-
menting this scheme, we have to use custom data structures and operators to hold and work with the shares.
For efficiency we could consider using basic data types (e.g. 32-bit and 64-bit integers) for storing the shares
directly, but mathematically, the 2m-bit integers act like elements in the ring Z2m and not like elements of
a finite field. Therefore we may consider additive secret sharing scheme over ring Z2m . Given n parties, a
sharing of a secret 2m-bit value s is constructed as follows:

s1 ← Z2m

s2 ← Z2m

. . .

sn−1 ← Z2m

sn ← s− s1 − . . .− sn−1 (mod 2m),

where [s] denotes the secret shared version of s and [s]i is the share held by party Pi. Furthermore, it is
possible to share individual bits of s and we denote it as [si] for the i-th bit. It is easy to see that the
additive secret sharing scheme is additively homomorphic, so addition of two secret shared values requires
no communication.

Most of the results using this secret sharing scheme are by Bogdanov et al. and the Sharemind
project [10]. Since Sharemind framework is developed with practical efficiency in mind, it uses three
parties and passive adversary model with at most one corrupted party.

The most recent set of protocols Sharemind uses can be found in [11]. In this review, we will give an
account of the complexity of the protocols in this set. In the following table ` = log2 (m)1. For the division
protocol, choosing n′ and n′′ (denoted as m in the original paper) depend on m, and we refer the reader to
the original paper [11] for details.

1For most of the Sharemind protocols it is required that m is a power of two.
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Protocol Rounds Communication

Addition [a+ b]← Add([a], [b]) 0 0

Multiplication [ab]← Mult([a], [b]) 1 15m

Share conversion Z2 → Z2m [a]← ShareConv([a]Z2) 2 5m+ 4

Equality testing [a
?
= b]← Equal([a], [b]) `+ 2 22m+ 6

Shift right (public shift) [a� p]← ShiftR([a], p) `+ 3 12(`+ 4)m+ 16

Bit extraction ([a0], . . . , [am−1])← BitExtr([a]) `+ 3 5m2 + 12(`+ 1)m

Division (public divider) [a/b]← PubDiv([a], b) `+ 4 (108 + 30`)m+ 18

Division (shared divider) [a/b]← Div([a], [b]) 4`+ 9 2n′′m+6n′′`+39`m+35`n′+
126m+ 32n′ + 24

Other necessary protocols are implemented by combining the protocols above. For example, the greater-
than-or-equal operator GTE on (m− 1)-bit values can be implemented as

GTE(x, y) =

{
1, if the highest bit of the difference x− y is 0,
0, otherwise.

that uses ShiftR functionality.

4.3 Multi-party computation based on homomorphic encryption

In this Section we will consider protocols that use properties of homomorphic encryption schemes. We will
mostly consider additively homomorphic encryption schemes [·], such that [m1][m2] = [m1 +m2] (e.g. lifted
ElGamal, Paillier [60], Damg̊ard-Jurik [22]). In this case addition of encryptions can be done locally by each
party. However, multiplication requires a separate interactive protocol. We will also consider Franklin-Haber
cryptosystem [28] that is XOR-homomorphic. All of the protocols covered in this Section are also covered
in more detail in [1, Section 5].

4.3.1 Circuit evaluation

First, we will consider a secure multi-party circuit evaluation protocol by Franklin and Haber [28] that is
secure against passive adversary. Next, we will briefly introduce three protocols that work against active
adversary. These are by Cramer et al. [18]; Jakobsson et al. [39]; and Schoenmakers et al. [65] respectively.

Franklin and Haber’s protocol. In [28], Franklin and Haber propose a XOR-homomorphic cryptosys-
tem and a protocol that allows n parties to collaboratively evaluate a boolean circuit C. The protocol works
in passive adversary model and needs O(|C|n) encrypted bits of communication.

Cramer et al’s. protocol. The protocol securely evaluates a function f using threshold homomorphic
encryption in a multi-party setting. This protocol is provably secure against static active adversary that is
able to corrupt minority of parties. It has O(d(C)) rounds and O(n|C|k) communication complexity, where
C denotes the circuit computing function f , k is a security parameter, |C| is the number of gates in C and
d(C) is the depth of circuit C. Multiplication gates on the same level are evaluated in parallel. The authors
of [18] argue that the construction of the protocol requires a sufficiently efficient threshold cryptosystem,
e.g. Paillier [60], Damg̊ard-Jurik [22] or a variant of Franklin-Haber, detailed in the same paper. For more
details, refer to [18]. The protocol of Cramer et al. is improved upon in several papers. Most relevant of
those are the work of Damg̊ard and Nielsen [23], who show that a similar protocol is secure against adaptive
active adversary; and the work of Hirt and Nielsen [35], who build a protocol with the same complexities
that guarantees that every party only learns the correct result and nothing else.
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Mix and match protocol. The mix and match protocol by Jakobsson et al. [39] uses the gate-by-gate
approach to evaluate the circuit C that computes function f . The protocol first blinds and mixes all the
rows in the logical table of each gate in C and then uses a secure multi-party plaintext equality test to
evaluate each gate. All gate input and output values are encrypted, so no intermediate results are revealed.
The communication complexity of the proposed protocol depends on the number of rows in the logical tables
of the circuit gates. Since the latter grows exponentially in the input size, it is reasonable to restrict the
approach to binary inputs. Then the communication complexity of the protocol is O(n|C|) group elements
(e.g. using ElGamal cryptosystem) and the round complexity is O(n + d(C)), where n is the number of
parties, |C| is the size of the circuit C and d(C) is its depth.

Conditional gate. Schoenmakers and Tuyls [65] propose another approach for circuit evaluation, by
constructing a conditional gate, a special kind of multiplication gate that efficiently multiplies two values
x and y, where x is restricted to a two-valued domain, e.g. x ∈ {0, 1}. The conditional gate works under
decisional Diffie-Hellman assumption (e.g. using ElGamal cryptosystem) and the choice of y is not restricted,
so one may have y ∈ Zq for large prime q. Using conditional gates to evaluate a circuit C corresponding to
the function f : Zq → Zq has round complexity O(nd(C)) and communication complexity O(nk|C| log (q)),
where n is the number of parties, k is a security parameter and d(C) and |C| are the depth and size of
circuit C respectively.

4.3.2 Rational numbers

Given Paillier cryptosystem with modulus N = pq for p < q, we can encode a rational number t = r/s as
t′ = rs−1 (mod N), where −R < r < R, 0 < s < S < p and RS < N . We can uniquely recover (r, s) for
any such t′ using Gauss Algorithm on lattices [72], provided that 2RS < N . The computation with this
values can be performed as normal, provided that the numerator and denominator do not exceed the given
limit. For details refer to [27].

4.3.3 Basic computation primitives

This section will briefly describe protocols for jointly generating random numbers, evaluating inverses and de-
composing encrypted values into bits by using threshold homomorphic cryptosystems. Again, this overview
is based on the work of [1, Section 5.3]. As stated in [18, 66], it is important to notice that some of the
protocols represented here require decryption of random values and, therefore, cannot be implemented using
cryptosystems that are able to decrypt only a limited subset of messages (e.g. lifted ElGamal). These
protocols are designed for and work with Paillier cryptosystem.

Random element generation (RN-Gate). This protocol generates [r], where r is a random element
from the encryption scheme’s message space [18].

Inversion and modular division. Given [x] and [y], such that x, y ∈ ZN , we want to find [x/y] = [xy−1].
Here it follows that finding modular division [x/y] requires first finding the encryption of the inverse of y
and one multiplication. The inversion protocol is given in [18], with slight optimization in [1].

Unbounded fan-in multiplication. This allows us to compute [
∏l
i=1 xi] given [x1], . . . , [xl]. Again, the

protocol is introduced in [18], with slight optimization in [1].

Random bit generation (RB-Gate). For generating random [b], where b ∈ {0, 1}. The protocol de-
scription is given in [18] and its communication complexity is shown for both constant and variable round
construction in the table below.
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Bitwise addition. This is a special protocol for computing [x + y] given x and y in their binary repre-
sentation, where each bit is encrypted separately: [x0], . . . , [xm] and [y0], . . . , [ym]. The protocol is outlined
in [1].

Least significant bit (LSB). Schoenmakers and Tuyls [66] introduced a protocol for extracting the least
significant bit of x, where both the input and output are encrypted. This protocol is also extended for
extracting l least significant bits [x0], . . . , [xl−1]. The round and communication complexity depends on
which construction one uses for the random bit generation. This least significant bit extraction gate can be
used to extract all bits of [x], however, it offers only statistical privacy. For perfect privacy, use the following
bit representation gate.

Bit representation. Given [x] it extracts all of its bits in encrypted form: [x0], . . . , [xm], providing perfect
privacy [66]. It has the same Big-Oh complexity as extracting least significant bits (where l = m), but with
higher constants.

The operation costs of the protocols covered in this Section are summarized in the following table (k is
a security parameter):

Operation Rounds Communication (bits)

Random element generation 2 O(nk)

Inversion and modular division O(1) O(nk)

Unbounded fan-in multiplication O(1) O(lnk)

Random bit generation
O(1) O(n2k)
O(n) O(nk)

Bitwise addition m+ 1 (depth) 4mnk

Least significant bits
O(l) O(ln2k)
O(n+ l) O(lnk)

Bit representation
O(m) O(mn2k)
O(n+m) O(mnk)

4.3.4 Circuits for primitives

This Section covers the circuit construction for sgn(x−y), x > y and x = y operations for bitwise encrypted
m-bit x and y. All the constructions described in here are by Schoenmakers et al. [65]. It is important to
notice that the circuit complexities are given in terms of depth and number of multiplication gates (e.g.
conditional gates), whereas the circuit evaluation protocols are described in Section 4.3.1.

Operation Circuit depth # of multiplication gates

sgn(x− y) m 2m− 2

Equality (x = y) m 2m− 1

Inequality (x > y) m 2m− 1

4.4 Two-party additive sharing

There exists a line of work mostly by Mikhail Atallah and his co-workers defining and using a set of
composable operations over data shared over a ring ZN by two parties (P1 and P2), where ZN is a ring
of plaintexts for a homomorphic encryption scheme. If Paillier’s scheme [60] is used (as we assume in this
section), then N is an RSA modulus and the ciphertexts belong to the set ZN2 . Let k = dlogNe. For a
number a ∈ ZN let [a] = ([a]1, [a]2) be its representation. Here [a]1, [a]2 ∈ ZN and [a] ≡ [a]1 +[a]2 (mod N).
Let Ei(x) denote the encryption of the item x ∈ ZN with the public key of party Pi for homomorphic
encryption. In stating the computation costs of operations possible with shared numbers, we use the
following notation.

• Mp — the cost of multiplying two plaintexts (two elements of ZN ).
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• Mc — the cost of multiplying two ciphertexts. As ciphertexts have twice the length of plaintexts, we
have Mc ≈ 4Mp.

• Ec — the cost of exponentiating a ciphertext with an element of ZN . We have Ec ≈ (3k/2) ·Mc.

• E — the cost of an encryption. For Paillier cryptosystem, E = 2Ec +Mc.

• D — the cost of a decryption. For Paillier cryptosystem, D = Ec + 2Mp.

• OT — the cost of an oblivious transfer. For Lipmaa’s homomorphic encryption based OT scheme [47],
OT = 2E + D + 2Ec +Mc.

Addition. To add two shared numbers [a] and [b], both parties add their shares. Cost — one addition;
no communication is necessary.

Multiplying two private numbers. Let a be known to P1 and b to P2. The goal is to obtain [c], where
c = ab.

Party P1 sends E1(a) to P2. Party P2 randomly generates r ∈ ZN and sends back E1(a)b · E1(r) =
E1(ab+ r). Party P1 decrypts and obtains [c]1 = ab+ r. Party P2 sets [c]2 = −r.

Multiplying two shared numbers. If a = [a]1 + [a]2 and b = [b]1 + [b]2 then ab = [a]1[b]1 + [a]2[b]1 +
[a]1[b]2 + [a]2[b]2. The first and last of those can be computed by P1 and P2, respectively. For the middle
two multiplications, the previous protocol (in parallel) has to be used.

Asymmetric blind-and-permute. Given a vector of shared numbers ([a1], . . . , [an]), the goal of this pro-
tocol is to obtain a new vector ([a′1], . . . , [a′n]), such that (a′1, . . . , a

′
n) is a random permutation of (a1, . . . , an),

and only P2 knows the permutation.

Party P1 sends E1([a1]1), . . . , E1([an]1) to P2. Party P2 picks a random permutation π of n elements,
and random numbers r1, . . . , rn ∈ ZN . Party P2 computes ei = E1([aπ(i)]1) · E1(ri) = E1([aπ(i)]1 + ri)
and sends (e1, . . . , en) back to P1. Party P1 decrypts ei and obtains [a′i]1 = [aπ(i)]1 + ri. Party P2 sets
[a′i]2 = [aπ(i)]2 − ri.

Blind-and-permute. Given a vector of shared numbers ([a1], . . . , [an]), the goal of this protocol is to
obtain a new vector ([a′1], . . . , [a′n]), such that (a′1, . . . , a

′
n) is a random permutation of (a1, . . . , an) and

neither party knows the permutation. To achieve this, asymmetric blind-and-permute is run once; and then
for a second time with the roles of the parties reversed [45]. Damg̊ard-Jurik encryption scheme [22] must
be used, such that all parties can use the same modulus N .

Divide by public. Let [a] be a shared number, let C be a public constant. The goal of the protocol is to
obtain [b], such that b = da/Ce [3].

We assume that a < 2` for some ` < logN . Both P1 and P2 divide their share by C and rerandomize
(they agree on a random number r that P1 adds to, and P2 subtracts from its share). If both [a]1 and [a]2
are less than 2` then this would complete the computations. If either [a]1 ≥ 2` or [a]2 ≥ 2` (or both), then
[a]1 + [a]2 = a + N . When dividing by C, we get an error term N/C which must be subtracted from [b]1
or [b]2. This error term is subtracted by P2 who will obtain it from P1 by means of oblivious transfer — P1

prepares the pair (0, N/C) (if [a]1 < 2`) or (N/C,N/C) (if [a]1 ≥ 2`); P2 will obtain the first (if [a]2 < 2`)
or the second (if [a]2 ≥ 2`) component of it.

The costs of operations are summarized in the following table.
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Operation Computation Communication Rounds

Add shared numbers negl. 0 0

Multiply private numbers 2E + D +Mc + Ec 4k 2

Multiply shared numbers 4E + 2D + 2Mc + 2Ec + 2Mp 8k 2

Blind-and-permute 4nE + 2nMc + 2nD 4nk 2

Divide by public 2Mp + OT 6k 2

This set of operations is extended with comparison (based on garbled circuits) and scaled reciprocal (x 7→
d2`/xe; based on the Newton-Rhapson method for finding roots of functions). A number of applications have
been built atop of this set of operations, including linear programming, collaborative planning, forecasting
and replenishment, capacity allocation, etc.
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Chapter 5

Server-assisted secure computation

In this chapter we review techniques for solving various computational problems, where the set-up and the
techniques have the following form.

• A low-power entity (the client) has a computational problem C.

• The client has access to a different entity (the server) with much higher computational power. The
client does not trust the server.

• The client generates some randomness R and constructs a different computational problem C ′ =
f(C,R) by applying the transformation f to C.

• The client sends C ′ to the server. The server solves C ′ and sends the solution s′ back to the client.

• The client applies a transformation g to s′, C and R and obtains s = g(s′, C,R) which is a solution to
C.

The client does not trust the server, hence C ′ should not leak information about C. If the server is malicious
then the client may also want to be able to verify that s′ is a correct solution to C ′.

We are interested in these techniques because they are applicable to SMC scenarios, particularly if a
virtual machine based technology is used. In this case, the client’s computations correspond to computations
performed with private data, and server’s computations to computations performed with public data. A
possible issue is the different performance profile of the virtual machine, compared to the client platforms
considered in the literature.

All protocols described here aim to securely implement the ideal functionalities Ff for various f -s with
two inputs and two outputs, where the second input (from the server) is not used and the second output is
always empty. They can be integrated into virtual machine based solutions as described above.

5.1 Linear algebra

5.1.1 Matrix multiplication

In [4], Atallah and Frikken propose a method for outsourcing the operation of multiplying two n×n matrices
M1 and M2 (with entries from a field over which Shamir’s secret sharing schemes [68] exist), such that the
client only performs O(n2) operations with the entries of the matrices. The client shares each entry of both
matrices using a polynomial of degree t (as we see below, here t ∈ N serves as a sort of security parameter).
For matrix Mi, let Pi(j) denote the matrix of the shares of all entries of Mi at the point j. Someone that
knows t+ 1 matrices Pi(j1), . . . , Pi(jt+1) and the points j1, . . . , jt+1 is able to recover Mi.

The product of matrices P1(j) · P2(j) contains shares for the entries of M1 · M2, where each share
has been constructed using some polynomial of degree 2t. The knowledge of 2t + 1 matrices P1(j1) ·
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P2(j1), . . . , P1(j2t+1) · P2(j2t+1), as well as the points j1, . . . , j2t+1 allows one to recover M1 ·M2 by linear
interpolation.

The idea of Atallah and Frikken is to construct 2t+ 1 shares of M1 and M2 using polynomials of degree
t, and send all shares to a single server. By itself, this construction is obviously insecure. Thus Atallah and
Frikken introduce a computational problem that postulates, that if enough chaff is added to these shares
(linear in the amount of real data), then the server cannot figure out which pieces of data it has received
are actual shares of M1 and M2, and which are random numbers.

Formally, the Strong Secret Hiding Assumption is the following. Let U(t, e,m, p) denote the uniform
distribution over matrices of size (2t+ 2e+ 2)×m with entries from Zp. Let R(t, e,m, p) be a distribution
over the same set of matrices, defined as follows:

• uniformly generate t+ e+ 1 different points j1, . . . , jt+e+1 from Z∗p.

• uniformly generate m polynomials f1, . . . , fm of degree at most t over Zp, such that fi(0) = 0 for all i.

• For k ∈ {1, . . . , t+ e+ 1}, let Rk be the (row) vector (f1(jk), . . . , fm(jk)).

• For k ∈ {t+ e+ 2, . . . , 2t+ 2e+ 2}, let Rk be a row vector of size m with rows uniformly chosen from
Zp.

• Output a matrix consisting of rows R1, . . . , R2t+2e+2, taken in random order.

The Strong Secret Hiding Assumption states that for all m and e, if p scales reasonably with t, the families
of probability distributions Um,e = {U(t, e,m, p)}t∈N and Rm,e = {R(t, e,m, p)}t∈N are computationally
indistinguishable. If this assumption holds then the matrix multiplication operation described below is
privacy-preserving.

Verification To verify that server has performed the computations correctly, Atallah and Frikken suggest
that the client submits not a single task of multiplying n × n-matrices M1 and M2 to it, but several tasks
simultaneously, with shares of different tasks in random order, such that the client already knows the
solutions to all but one multiplication tasks.

Another, generic way to compare two n×n matrices A and B with O(n2) scalar operations is to generate
a random vector v of length n and compare the vectors Av and Bv. If the elements of A, B and v belong to
a field of size p, then the probability of A 6= B and Av = Bv simultaneously holding is at most 1/p. Given
three n × n matrices A, B and C, the verification of AB = C can be performed by generating a random
n-element vector v and checking that A(Bv) = Cv. Obviously, the check can be repeated to lower the error
probability.

5.1.2 Iterative solution of linear equation systems

A cloud-assisted iterative solution of linear equation systems Ax = b has been proposed by Wang et al. [73].
Here A is a non-singular n× n matrix, b is a (column) vector of length n and x is the vector of unknowns.
The system can be represented as (D + R)x = b, where D is a diagonal matrix and R = A − D. This is
equivalent to x = D−1b − D−1Rx; this system may be solved iteratively by defining x(k+1) = c + Tx(k),
where c = D−1b and T = −D−1R.

Wang et al. first mask the vector of unknowns: the first step is to generate a secret random vector r,
set y = x+ r and define a new system A(y− r) = b, which is equivalent to Ay = b′, where b′ = b+Ar. This
system will then be solved iteratively as y(k+1) = c′ + Ty(k), where c′ = D−1b′. The entries of the matrix T
are encrypted using homomorphic encryption and sent to server. The client picks an initial estimate y(0).

At k-th iteration:

• The client sends y(k) to the server.

• The server uses homomorphic properties of the encryption to compute the encrypted entries of the
vector Ty(k). These are sent back to the client.
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• The client decrypts and adds the vector c′, thus obtaining y(k+1).

The security analysis in [73] is informal. The approach is claimed to protect the actual solution x, because
during the iteration, an independent value y is targeted. As the client sees the iterates y(k), it can directly
observe whether they are approaching the zero vector.

5.1.3 Matrix inversion

To invert a n × n matrix M , the client generates a random invertible n × n matrix R and sends M · R
to the server. The server replies with (M · R)−1 = R−1 ·M−1; the correctness of this computation can
be verified by multiplying the result with MR and checking that it gives the unit matrix. The client
computes R · (R−1 ·M−1) = M−1. The client thus has to perform two n× n matrix multiplications. In the
second multiplication, one of the arguments is public. This method was already published in [6]. A random
invertible matrix can be generated as described in [63], at the cost that is dominated by one n × n matrix
multiplication.

5.1.4 Linear programming

The task of linear programming is to minimize cTx, subject to conditions Ax ≤ b and x ≥ 0. Here x is
an n-element vector of unknowns taking values from the set of real numbers. A is a m × n matrix, b is a
m-element and c and n-element vector, all with real entries. The inequalities between vectors and matrices
are defined pointwise.

In a more general setting, the conditions on x may be both linear inequalities and equalities. Also,
typical solution algorithms transform inequalities to equalities by introducing extra slack variables. Hence
the conditions on x may be given as A1x = b1, A2x ≤ b2, x ≥ 0, where Ai is a mi × n matrix and bi is a
mi-element vector.

Dreier and Kerschbaum [24] propose the following method for the client to hide A1, A2, b1, b2 and c
from the server as follows.

• Let Q be a n × n positive monomial matrix. A square matrix is monomial if it contains exactly one
non-zero entry in each row and in each column. It is positive if all those non-zero entries are positive.

• Let r be a positive random n-element vector.

• Let S be a strictly positive n × n diagonal matrix. I.e. it has positive entries on the main diagonal
and zeroes elsewhere.

• Let P be a (m1 +m2 + n)× (m1 +m2 + n) nonsingular matrix.

• Define A′, b′ and c′ as

A′ = P ·

 M1Q 0
M2Q Im2+n−S

 b′ = P ·

 b1 +M1Qr
b2 +M2Qr
−Sr

 c′ =

(
QT c

0

)

The server then has to solve the problem of minimizing c′T z, subject to the constraints A′z = b′ and z′ ≥ 0,
where z is a vector of unknowns of size 2n+m2.

Dreier and Kerschbaum perform a security analysis of the transformation, based on the notion of channel
capacity [69]. Each operation in constructing A′, b′ and c′ can be seen as a noisy channel, For certain
definitions of noise, the bounds on the capacity of the composite channel can be found from the bounds on
the elementary channels. More analysis is probably necessary before this solution can be applied in practice.
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5.2 Set intersection

There exists a very simple protocol for server-aided two- or multiparty set intersection computation, if all
parties are semi-honest. Let party Pi have the set Si = {si,1, . . . , si,`i}. Let K be a key for a pseudorandom
function F ; K is shared by all parties Pi, but unknown to the server. Party Pi sends FK(si,1), . . . , FK(si,`i)
to the server (randomly permuted). The server finds the intersection of all values received by different
parties and communicates back the values FK(x) in the intersection. The only thing server learns are the
cardinalities of the sets Si1 ∩ · · · ∩ Sik for all combinations (i1, . . . , ik).

To verify that the server performs correctly, the parties replace each element x in their sets with η copies
x|1, . . . , x|η of it, where η is the security parameter. Now the elements of the set intersection received from
the server must contain all η copies of any element in the intersection. This verification fails only if the
server claims that the intersection is empty, or that it contains all elements it received. To prevent this, the
parties add dummy elements to their sets to rule out those two cases.

Kamara et al. [41] show how to make this construction secure also against malicious parties. The parties
also have a second key K ′ shared between each other, they run the protocol described in the previous
paragraph on the sets FK′(Si) = {FK′(si,1), . . . , FK′(si,`i)}. But before the server makes the intersection
result available to parties, it checks that all parties have followed protocol: the server first commits to the
result and then all parties send K and the sets FK′(Si) to the server. Only if these match the messages the
server has received so far, will it open the committed result.

5.3 General server-aided computation from garbled circuits

In a two-party secure computation protocol based on garbled circuits, party P1 generates the keys corre-
sponding to both parties’ inputs (as well as for all intermediate results), garbles the circuit, and sends the
circuit and the keys for inputs to party P2 (using oblivious transfer for P2’s inputs). Party P2 evaluates the
garbled circuit, learns the result of the computation and sends it back to P1. It is possible to offload some
of these computations to a third party (the server S).

Feige et al. [25] propose a setting where P1 and P2 share a common source of randomness (e.g. a random
seed that can be fed to a pseudorandom generator) that is unknown to S. Party P1 will use this source of
randomness to generate the keys for inputs and intermediate results, and to garble the circuit. P1 will then
send the garbled circuit and keys corresponding to its own inputs to S. Party P2 will also use that source
of randomness to generate only the keys that correspond to its own inputs. Thanks to using the common
source of randomness, P1 and P2 will generate the same keys for the same inputs. P2 sends the keys it
generated to S. The server S evaluates the garbled circuit, learns the output and communicates it back to
P1 and P2. The protocol is secure against semi-honest adversaries.

Kamara et al. [41] improve the previous protocol in several aspects. First, they note that if the translation
table for the outputs of the garbled circuit is not sent to S then S will learn the result of the computation
only in encrypted fashion. The encryption can be sent back to P1 and P2 who learn the result. Second,
cut-and-choose techniques can be used to gain security against deviations from the protocol. Also, the
protocol can be extended to more than two parties if they all share the source of randomness.

5.4 General server-aided computation from FHE

Fully homomorphic encryption [31] is intended to be used in a manner where one party performs the
computations, in this sense it is also a server-aided secure computation technique. It is intended to be
used in the two-party setting where the client C encrypts its inputs with its own public key KC , and sends
the encrypted inputs a the server S. The server executes a circuit, possibly together with its own inputs,
producing encrypted outputs. These are sent back to the client who can decrypt those.

López-Alt et al. [50] have shown how to extend this technique to the multi-party setting where several
clients send their encrypted inputs to a server. Normally, there would-be the issue of different clients having
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different public keys. To cope with this, Gentry [31] proposed the clients to execute separate SMC protocols
to jointly generate the key, and to jointly decrypt the results. These protocols are made straightforward
by the use of key-homomorphic FHE proposed in [50] as a combination of ideas from earlier papers. The
proposed protocols have four rounds in the semi-honest and five rounds in the malicious setting. Because
of the use of FHE, the communication and computation requirements of these protocols are currently not
practical.
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Chapter 6

Protocols for specific tasks

This chapter gives an overview of techniques for specific secure computation problems that have more efficient
protocols than what would be obtainable from the generic constructions. The primary aim of this chapter
is to cover different techniques, not different problems. Hence we do not specifically consider problems that
can be solved by a clever combination of the techniques described in previous chapters.

As a rule, the techniques in this chapter provide secure implementations for ideal functionalities Ff ,
where f is the function that we want to compute. An exception are the secure operations on multisets by
Kissner and Song [42] described in Sec. 6.3. These operations work on secure encodings of multisets and
deliver their results in the same format, allowing to securely realize a functionality similar to FABB.

6.1 Scalar product

Let party A have a vector v of length d with elements from a suitable ring R. Let party B have a vector w
of the same length over the same ring. A private scalar product protocol allows A to learn only v · w with
B learning nothing.

Scalar products can be easily evaluated using the cryptographic methods of previous chapters. Addi-
tionally, non-cryptographic methods have been proposed [71, 36], where the data is scrambled and later
de-scrambled using operations of linear algebra. These methods can have much lower computational costs
than methods based on e.g. homomorphic encryption, but their communication costs may be higher and
they typically do not fully hide the vectors and the relationships between their elements.

Scalar product is often used as a sub-protocol in larger computations, e.g. if a vector {Ai}ni=1 has been
additively shared among several parties, for example Ai = Ai,1 + Ai,2; the sharing is between two parties,
then scalar product helps to compute the sum

∑n
i=1A

2
i . Indeed,

n∑
i=1

A2
i =

n∑
i=1

(Ai,1 +Ai,2)2 =
n∑
i=1

A2
i,1︸ ︷︷ ︸

P1 computes

+
n∑
i=1

A2
i,2︸ ︷︷ ︸

P2 computes

+2
n∑
i=1

Ai,1Ai,2︸ ︷︷ ︸
scalar prod.

The sum of squares is often required in e.g. geometric applications, where (the squares of) Euclidean
distances between private points have to be computed.

6.2 Applying homomorphic properties of the Goldwasser-Micali encryp-
tion

For an RSA modulus N = pq, let JN ⊆ ZN be the set of all x ∈ ZN , such that the Jacobi symbol
(
x
N

)
equals 1. Let QRN be the set of quadratic residues modulo N and QNRN = JN\QRN . The quadratic
residuosity assumption states that without the knowledge of p and q, the uniform distribution over QRN is
indistinguishable from the uniform distribution over QNRN .
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The public-key encryption scheme introduced in the original paper by Goldwasser and Micali [33], the
public key is (N, z), where N is an RSA modulus and z ∈ QNRN . The secret key are the factors p and q
of N . Possible plaintexts are the bits 0 and 1, the ciphertexts belong to ZN . To encrypt a bit b, select a
random r ∈ Z∗N and output zbr2 ∈ ZN . In other words, the encryptions of 0 are random elements of QRN ,
while the encryptions of 1 are random elements of QNRN .

The following operations can be performed with the ciphertexts.

Rerandomize If y ∈ ZN is a ciphertext then y·r2 is also a ciphertext encrypting the same bit, but otherwise
uniformly distributed (if r is chosen uniformly from Z∗N ).

XOR By the properties of the Jacobi symbol, if y1 encrypts b1 and y2 encrypts b2 then y1 ·y2 ∈ ZN encrypts
b1 ⊕ b2.

Negation Similarly, if y encrypts b then y · z encrypts ¬b.

We call this version of the GM-encryption the XOR-homomorphic encryption.
We can also define a different version of GM-encryption which we call the AND-homomorphic encryption.

Let κ be an additional security parameter. The encryption of bit 1 is a vector of length κ of uniformly
randomly chosen elements of QRN (computed by randomly selecting r ∈ ZN and outputting r2). The
encryption of bit 0 is a vector of length κ of uniformly randomly chosen elements of JN (computed by
randomly selecting r ∈ ZN until

(
r
N

)
= 1). With this scheme, decryption may fail, but only with probability

2−κ.
The following operations can be preformed with the ciphertexts.

Rerandomize XOR-rerandomize each component of the ciphertext. Then permute the elements of the
vector.

AND Given two ciphertexts of the AND-homomorphic encryption, rerandomize them both (actually, it is
sufficient to rerandomize only one of them), giving Y1 = (y1,1, . . . , y1,κ) and Y2 = (y2,1, . . . , y2,κ). Then
output (y1,1 · y2,1, . . . , y1,κ · y2,κ). If at least one of the inputs represents the bit 1, then the operation
works flawlessly. If both inputs are 0, then with probability 2−κ, the result may represent 1.

Finally, a XOR-ciphertext can be transformed into an AND-ciphertext. Given a XOR-ciphertext y, let
each of the components y1, . . . , yκ of the AND-ciphertext be

• either a XOR-rerandomization of y1;

• or a random element of QRN
with equal probability. In this way, if y XOR-encrypts the bit 1, then yz is an element of QRN . its
rerandomizations are also elements of QRN . If y XOR-encrypts the bit 0 then yz is an element of QNRN .
The components of the AND-ciphertext are thus randomly chosen from JN .

Let F (x1, . . . , xn) be a boolean formula of the form

F (x1, . . . , xn) =
m∧
i=1

(ci0 ⊕ ci1 ∧ x1 ⊕ · · · ⊕ cin ∧ xn)

for some (public) m,n ∈ N and boolean c10, . . . , cmn. Given XOR-encrypted bits [b1]XOR, . . . , [bn]XOR, it is
possible to compute the AND-encryption of F (b1, . . . , bn) without interacting with the owner of the secret
key. One would first compute the XOR-encryptions of all exclusive OR-s in the formula, transform those to
AND-encryptions, and compute the conjunction.

An important example of a formula F in almost such a form is the less-than-functionality. Let a1, . . . , an
and b1, . . . , bn be bit-wise representations of two natural numbers, with a1, b1 being the most significant bits.
In this case

a > b ≡
n∨
i=1

(
ai ∧ ¬bi ∧

i−1∧
j=1

(aj = bj)
)
.
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Here (aj = bj) is equivalent to ¬(aj ⊕ bj). Note that if the disjunction is true then exactly one component
ai ∧ ¬bi ∧

∧i−1
j=1(aj = bj) of the disjunction is true. We can thus compute all n components as AND-

encryptions and then permute them (again, as AND-encryptions). If a > b then the list of AND-encryptions
contains exactly one AND-encryption of the bit 1. If a ≤ b then only 0-s are AND-encrypted.

The computation method described here is due to Fischlin [26].

6.3 Privacy-preserving set-theoretic operations

Kissner and Song [42] have proposed a set of representations and algorithms for manipulating multisets. The
protection mechanism in their approach is based on threshold homomorphic encryption. The protocols are
secure against semi-honest adversaries, but zero-knowledge proofs may be added to protect against malicious
ones.

Let N be the modulus for addition, supported by the homomorphic encryption. We consider the multisets
Υ of elements from a publicly known set S ⊆ ZN , such that |S|/N is negligible.

Multisets are represented by polynomials f ∈ ZN [x]. A polynomial f represents a set Υ, such that x ∈ S
is an element of Υ iff f(x) = 0. Moreover, the multiplicity of x ∈ Υ is equal to the multiplicity of the
root x of f . The polynomial f may have other roots outside the set S. These roots have no effect on the
represented set Υ.

The following operations on multisets can be performed on their polynomial representations.

Union If fi represents the multiset Υi then
⊎
i Υi is represented by

∏
i fi.

Intersection If fi represents the multiset Υi (i ∈ {1, . . . , n}) then
p
i Υi (here C denotes the multiset

intersection) is represented by gcd(f1, . . . , fn), as well as by any multiple of it. In [42], random
polynomials g1, . . . , gn are generated, where deg gi = 2(maxj deg fj)− deg fi, and

⋂
i Υi is represented

by
∑

i figi.

Element reduction by d If Υ is a multiset then Rdd(Υ) denotes a multiset, such that each element a ∈ S
that occurs b times in Υ, occurs max{b− d, 0} times in Rdd(Υ). If Υ is represented by f then Rdd(Υ)
can be represented by gcd(f, f ′, f ′′, . . . , f (d)), where f (i) denotes the i-th derivative of f . A random
multiple of this greatest common divisor is computed in the same way as computing the intersection.

In a privacy-preserving representation, each polynomial is represented as the sequence of encryptions of its
coefficients (i.e. the degree of the polynomial, or an upper bound of it is public). Standard HE protocols
are used to manipulate the polynomials. The representation also allows to determine whether some a ∈ S
belongs to some Υ represented by [f ]. The value [r ·f(a)] can be computed, where r ∈ ZN is a collaboratively
generated random number (i.e. no allowed coalition of parties knows its value). The decryption r · f(a) is
0 if a ∈ Υ, and a random number otherwise.

If we have just two parties P1 and P2 holding sets S1 and S2, and the goal of the protocol is for P1 to
learn S1 ∩ S2 (and P2 to learn nothing at all) then protocols based on oblivious pseudorandom functions
(OPRF) [53] can be used. An OPRF consists of a pseudorandom function family F and a protocol between
two parties, the first of them holding the key k and the second holding the input x. After running the
protocol, the second party learns Fk(x), while the first party learns nothing. This can be turned into a
set intersection protocol by letting P2 select a key k, send {Fk(x) |x ∈ S2} to P1, and then obliviously
evaluate Fk(y) for all y ∈ S1 with P1 learning the results. De Cristofaro et al. [20, 19] have presented several
instantiations of that idea, where the total computational load is a couple of modular exponentiations per
element of S1 or S2.

Brickell and Shmatikov [14] have proposed a protocol (even two of them) for privacy-preserving set union
in a similar setting: parties P1 and P2 have the sets S1 and S2; both will learn the set S1 ∪ S2 and nothing
more. The protocol computes the set S1 ∪ S2 element-by-element, starting from the smallest. Each round
requires the computation of the minimum of two elements, one held by P1 and another by P2; the result
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of the comparison is public. If garbled circuits are used for the computation, the whole protocol requires
O(|S1 ∪S2|) rounds and O(` · |S1 ∪S2|) computation, where ` is the bit-length of the elements of S1 and S2.

Neugebauer et al. [54] use the privacy-preserving multiset operations to implement the selection of a
common choice from the sets of choices of a number of parties, such that the selected choice maximizes
an utility function that is defined from the preference orders of each party on its set of choices. If parties
P1, . . . , Pn have sets S1, . . . , Sn with preference relations ≤i (where the smallest is the most preferred), then
let ri(a) be the rank of the element a for the party Pi, defined as follows. If a 6∈ Si then ri(a) = 0. Otherwise,
if a is the k-th largest elements of Si then ri(a) = k.

To find an element c ∈
⋂
i Si that maximizes the number mini ri(c), each party Pi will define the multiset

Υi that contains each element a ∈ Si for ri(a) times. The parties will then collaboratively find such c as
some element in Rdt(

p
i Υi), where t is as large as possible. The protocol proceeds in rounds; in each round

t is reduced by 1. In each round, a polynomial f representing Rdt(
p
i Υi) is computed and made public.

Each party Pi then checks whether some element of Si is a root of f . If it is, the element c has been found.
To find an element c ∈

⋂
i Si that maximizes the number

∑
i ri(c), each party Pi will define the multiset

Υi as above, as well as the multiset Υ′i that contains nk copies of each a ∈ Si, where k is some upper
bound on the cardinalities of S1, . . . , Sn. The element c is the found as some element of the multiset
Rdt((

⊎
i Υi) C

p
i Υ′i), where t is as large as possible.

6.4 Parsing regular languages

Several authors have studied the problem of parsing, where both the input string as well as the language
description is private. We give an overview of [9], where both the string and the finite automaton are
additively shared between two parties P1 and P2. As the main operation in performing a step of a finite
automaton is the selection of the next state based on the previous state and the next letter of the input
string, oblivious transfer is the main component of the protocol.

Let the secret input string be w = w1w2 · · ·wn, where xi ∈ Σ for a public n and Σ. Let m = |Σ|. Let
(Q,Σ,∆, q0, F ) be a deterministic finite automaton, where the set of states Q, as well as the initial state q0

is public, but the transition function ∆ : Q × Σ → Q and the set of final states F are private. W.l.o.g we
identify Σ with Z|Σ|, Q with Z|Q| and set q0 = 0.

The elements of ∆ are shared additively modulo |Q| between P1 and P2. The letters of the input string
w are shared additively modulo |Σ| between P1 and P2. Let q (secret) be the state of the DFA before parsing
the k-th letter wk = x (secret) of the input string. Let x = x1 + x2, q = q1 + q2 and ∆ = ∆1 + ∆2 be the
sharings of the current letter, state and the transition function between parties. The goal of the parties is
to determine random q′1 and q′2, such that q′1 + q′2 = ∆(q, x) mod |Q|.

• Party Pi generates a random number ri ∈ Z|Q| and defines ∆′ by ∆′i(a, b) = ∆(a+ qi, b+ xi)− ri.

• P1 and P2 execute a 1-out-of-|Q| · |Σ| OT protocol, such that P1 can learn s1 = ∆′2(q1, x1). A second
execution of the OT protocol with reversed roles allows P2 to learn s2 = ∆′1(q2, x2).

• Pi defines q′i = ri + si.

Hence the cost of parsing one letter is two parallel executions of 1-out-of-|Q| · |Σ| OT protocols. There are
other protocols for performing the first transition (where the starting state q0 is public) and for checking
whether the final state belongs to F . These protocols are no more complex than the general transition
protocol shown above.

Mohassel et. al [51] propose a method for obliviously evaluating a DFA if party P1 has the input string
w (with public length n) and party P2 the finite automaton (Q,Σ,∆, q0, F ). The method, similar to Yao’s
garbled circuits, allows party P1 to find out whether P2’s automaton accepts the string w. Consider the
“∆-gate”: it takes two inputs: q ∈ Q and x ∈ Σ, and returns ∆(q, x) ∈ Q. Similarly, we can consider the

F -gate that takes q ∈ Q as input and returns the bit q
?
∈ F . Party P2 prepares a circuit with n ∆-gates

and one F -gate. The first ∆-gate has the inputs q0 (a constant) and w1. The i-th ∆-gate has the output
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of the (i − 1)-st ∆-gate and wi as its inputs. The F -gate takes the output of the last ∆-gate as its input.
Party P2 garbles this circuit (note that for each wire carrying n possible values, party P2 needs to generate
n keys). It sends the garbled circuit to P1, as well as the keys corresponding to the inputs w1, . . . , wn, using
n instances of 1-out-of-|Σ| oblivious transfer. Party P1 evaluates the garbled circuit.

This protocol requires only 2 rounds of communication (equal to the round complexity of oblivious
transfer). For each ∆-gate, party P2 has to perform 2 · |Q| · |Σ| encryptions (or evaluations of the random
oracle). Party P1 has to perform a similar number of decryptions. The F -gate can be combined with the
last ∆-gate.

6.5 Private database search

There exist specific protocols for the Private Information Retrieval (PIR) task where one party (the client)
wants to access an item in the database held by the other party (the server), but the server may not know
which item the client wants to have. If the client also may not learn anything about the other items in
the database then we have an instance of the Symmetric PIR (SPIR) problem, which coincides with the
oblivious transfer problem.

In [59], Ostrovsky and Skeith survey the PIR and SPIR protocols available at that time (2007). There
exist PIR protocols where the communication complexity is just O(log2 n), where n is the number of items
in the database [47, 32]. If a total of m queries against the same database are provided, the communication
complexity can be lowered to O(m log n) [34].

The computational complexity of a PIR protocol must be at least O(n), as the server must “touch” all
bits of the database. In the protocols referenced so far, this actually means that O(n) public-key operations
must be executed. If there are large chunks of constant data, then the number of public-key operations may
actually be smaller, as shown by Lipmaa [49]. In his solution, the mapping of the index to the data item is
seen as a function from natural numbers to bit-strings, a branching program is constructed to evaluate this
function, and the evaluation is made secure according to the techniques described in Sec. 3.2. Frikken and
Li [29] instead use a Boolean circuit (in the form of a search tree) to evaluate this function, and garble this
circuit to obtain a secure evaluation method. The garbling can be done off-line.

In [5], Atallah and Li consider the following problem. There is a public σ × σ table S that contains
values from the ring ZN for some RSA-modulus N . There is a value x ∈ Zσ and a vector µ with elements
from Zσ. The value x and the elements of µ are additively shared between parties P1 and P2. The parties
want to obtain a sharing of a vector T of length |µ|, such that T [i] = S[x, µ[i]]. We denote the shares of the
i-th party by xi, µi[j], Ti[j].

Let E denote encryption with P1’s public key, using an encryption scheme that is additively homomorphic
over ZN . Party P1 prepares a σ × σ table Ŝ, where Ŝ[i, j] = E(S[i+ x1, j]); this table is send to P2. Party
P2 discards all but the x2-th row v = Ŝ[x2, ∗] of this table. For each j ∈ {1, . . . , |µ|}, party P2 generates a
random T2[j] ∈ ZN , subtracts (under encryption) it from all components of v and circularly shifts v left by
µ2[j] places, resulting in the vector vj , where vj [i] = E(S[x1 + x2, i+ µ2[j]]− T2[j]). Parties P1 and P2 use
1-out-of-σ oblivious transfer, such that P1 learns the µ1[j]-th element of vj . The decryption of this element
will be T1[j].

The total communication complexity of this protocol is O(σ2 + σ · |µ|). The computational complexity
may be reduced by the reductions between various OT protocols described below.

6.5.1 Extending oblivious transfers

The protocols described above may involve many oblivious transfers which may be computationally expen-
sive. Ishai et al. [37] have shown how to use a few 1-out-of-2 OTs to obtain many instances of 1-out-of-2
OT.

Let sender S have m pairs of bit-strings (xi,0, xi,1), where i ∈ {1, . . . ,m}. Let the receiver R have m bits
b1, . . . , bm. Let b be the m-bit string b1 · · · bm. The goal of R is to learn xi,bi for all i, without S learning
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anything and R learning nothing about xi,1−bi . Let H be a random function, modeled as a random oracle.
The protocol works as follows.

1. R randomly generates η m-bit strings t1, . . . , tη, where η is a security parameter. Let ti,j be the j-th
bit of the string ti. S randomly generates η bits s1, . . . , sη.

2. Using η instances of 1-out-of-2 OT, with R as the sender and S as the receiver, S obtains the bit-strings
wi = ti ⊕ bsi , where bsi is b, if si = 1, and the bitstring 0m, if si = 0. Let wi,j be the j-th bit of the
string wi. By the definitions, wi,j = ti,j ⊕ (bj ∧ si).

3. For all j ∈ {1, . . . ,m}, S computes the masks Mj,0 = H(j, w1,j , . . . , wη,j) and Mj,1 = H(j, w1,j ⊕
s1, . . . , wη,j ⊕ sη). It sends to R the values xj,0 ⊕Mj,0 and xj,1 ⊕Mj,1.

We have
Mj,bj = wi,j ⊕ (si ∧ bj) = ti,j ⊕ (bj ∧ si)⊕ (si ∧ bj) = ti,j .

The bits ti,j are known to R, hence it is able to compute Mj,bj and recover xj,bj . On the other hand,

Mj,¬bj = ti,j ⊕ (bj ∧ si)⊕ (si ∧ ¬bj) =

{
ti,j , if si = 0

¬ti,j , if si = 1 .

To compute Mj,¬bj , R has to try out all possible values for the bits (s1, . . . , sη).
Ishai et al. [37] show that this protocol is secure against malicious S and semi-honest R. Security against

malicious R can be obtained by using the cut-and-choose technique after the second step of the previous
protocol, which exponentially magnifies the probability of detecting R’s misbehaviour.

6.5.2 Efficient 1-out-of-n oblivious transfer

Naor and Pinkas [52] have proposed an 1-out-of-n oblivious transfer protocol, where the cost per protocol
session is just two modular exponentiations for the receiver R and one modular exponentiation for the
sender S (plus some less expensive operations). Additionally, there is a set-up phase, the cost of which can
be amortized over many 1-out-of-n OT sessions.

Let G be a group with hard Diffie-Hellman problem. Let g be its generator. In the set-up phase, S
chooses n− 1 values C1, . . . , Cn−1 ∈ G and sends them to R. It also chooses a random number α and sends
h = gα to R. The sender precomputes Cα1 , . . . , C

α
n−1.

In the on-line phase, the sender has n messages M0, . . . ,Mn−1 and the receiver has a number i ∈
{0, . . . , n − 1}. The receiver selects a random number r and sets pk i = gr. If i 6= 0, then it also computes
pk0 = Ci/pk i. The receiver sends pk0 to the sender. The sender computes PK 0 = pkα0 and PK i = Cαi /PK 0

for all i ∈ {1, . . . , n− 1}. The sender chooses a random string R and sends it and H(PK i, R, i)⊕Mi back
to the receiver (for all i ∈ {0, . . . , n − 1}). Here H is a hash function, modeled as a random oracle. The
receiver can recompute PK i as hr.

6.6 Privacy-preserving Graph Algorithms

In [14], Brickell and Shmatikov consider privacy-preserving graph algorithms in the following setting. There
are two parties P1 and P2, and a public graph G = (V,E). Each Pi has a private weight function wi : E → N.
Consider the weight function w, where w(e) = min{w1(e), w2(e)}, and the weighted graph (G,w). Solve a
graph-theoretic problem on (G,w), such that the solution becomes known to both P1 and P2, but nothing
more leaks about w1, w2.

The considered problems are all-pairs shortest distance (APSD), single-source shortest distance (SSSD)
and minimum spanning tree. For the last two problems, existing algorithms (Dijkstra; Kruskal or Prim) can
be implemented in privacy-preserving manner. For APSD, a new algorithm is proposed, fixing the distances
between pairs of vertices one-by-one (actually, all pairs with the same distance are fixed together). If k is the

33



UaESMC Deliverable D2.1 Review of the state of the art in SMC

number of different distances in the solution of the APSD problem and ` is the bit-length of weights, then
the protocol has O(k) rounds and O(k(`+ log k)) communication and computation complexity. Brickell and
Shmatikov [14] note that in this security model, where the result of the APSD computation is made public,
that result contains significant amount of information that helps in the construction of the simulator.
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