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Executive Summary:
Potential Uses of SMC in Game Playing and Mechanism Design

This document summarizes deliverable D3.1 of project FP7-284731 (UaESMC), a Specific Targeted Research
Project supported by the 7th Framework Programme of the EC within the FET-Open (Future and Emerging
Technologies) scheme. Full information on this project, including the contents of this deliverable, is available
online at http://www.usable-security.eu.

This report constitutes a review on the interplay between secure multi-party computation (SMPC)
protocols and Game Theory. Its main purpose is to provide a high-level presentation on existing techniques
which incorporate SMPC protocols within game-theoretic notions and vice versa.

Also, this report presents potentially useful directions in which to extend the existing results on fair
computation with rational players, such that a general theory on distributed Mechanism Design would result.
The extensions would foremost consider the number of players, as well as different equilibria, eventually
leading to a way to replace any to-compute functionality f with allocation and payment functions.
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Chapter 1

Introduction

The application of secure multi-party computation protocols (SMPC) in real world problems is a major
topic that has been extensively studied by the cryptographic community during the last decade, not only
from an applied but also from a theoretical perspective. The primary objective of the UaESMC project is
to provide tools that make such applications efficiently realizable. Towards that direction, the UaESMC
project uses as a basis cryptographic and game-theoretic notions and builds theoretical foundations that lead
to efficient applications of SMPC protocols.

The purpose of this text is to provide an overview of the world which lies on the intersection between
Game Theory and Cryptography, and more specifically, we focus on the interplay between SMPC and Game
Theory. The traditional cryptographic context considers two types of parties. The honest parties, who
follow the prescribed protocol, and the malicious, who may deviate from the protocol arbitrarily. Now, an
interesting question rises. What if we incorporate rationality on cryptographic protocols such as SMPC
protocols? On the other hand, can we apply SMPC protocols in order to achieve game-theoretic notions?
This deliverable aims to answer these questions by reviewing the state of the art in the intersection between
SMPC and Game Theory.

Besides the introductory part the rest of the deliverable is structured as follows. Chapter 2 is a prelimi-
nary chapter and aims to familiarize the reader with prerequisite notions of Cryptography and Game Theory.
Specifically, we define secure multi-party computation (SMPC) and the considered adversarial model, we
present a variety of assumptions on the communication channels and we discuss the cryptographic primi-
tives that are being employed throughout this text. Symmetrically, we define game-theoretic notions such as
games, the notion of Nash equilibrium and some of its variations. Readers who are familiar with such notions
may skip Chapter 2 and revisit it only when they meet notions unknown to them. In this chapter we try to
avoid formal mathematical definitions and we provide brief and intuitive presentations for tools employed on
subsequent chapters. Chapter 3 reviews the interconnection between Game Theory and secure multi-party
computation and presents techniques that incorporate game-theoretic notions within SMPC and vice versa.
Finally, Chapter 4 considers possible future directions towards meaningful and elegant constructions that
incorporate both cryptographic and game-theoretic notions.

In order to provide neat and conceptual presentations we avoid counter-intuitive notational conventions
in the entire text. For each protocol presented, we discuss the underlying model, the considered assumptions,
we give a high-level overview of the protocol steps and in some cases we provide further intuition on the
protocol properties. Therefore, in many cases technical details and proofs are intentionally omitted and we
refer the reader to the original texts.
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Chapter 2

Foundations

2.1 Basic notions from Cryptography and SMPC

Modern cryptography is a field which lies on the intersection between mathematics, computer science and
electrical engineering, and studies techniques that prevent untrusted parties to intervene in any strictly
defined interaction between honest parties so as to inflict private information disclosure or modification.
Following the standard terms, cryptography incorporates well established algorithms, called cryptographic
primitives, in order to enforce confidentiality, data integrity, authentication and non-repudiation. For the
needs of the current text, we mainly focus on confidentiality, and specifically, confidentiality in the context
of secure multi-party computation protocols (SMPC).

In multi-party computation (MPC) we consider n parties, where each party Pi, 1 ≤ i ≤ n, possesses an
input xi and they all wish to jointly compute the vector (y1, . . . , yn) = f(x1, . . . , xn). Then, each Pi receives
only yi. Throughout this text we mainly deal with the special case in which f outputs a single value y and all
parties wish to learn that value. Now, according to the classical definition of secure multi-party computation
(SMPC), the value of xi is private and the parties may be of two types: the honest-but-curious (or honest),
who follow the prescribed protocol but they also try to learn as much as possible about the private inputs of
other parties, and the malicious (or adversarial) who may deviate from the protocol arbitrarily. Collusions
between the adversarial parties are also permitted, or in other words, the model considers an adversary who
may control up to k parties, for some k ∈ N. A k-secure multi-party computation protocol (k-SMPC) ensures
that any adversary who controls up to k parties cannot leak any information related to the private inputs of
the honest parties, besides the leakage she gets from f(x1, . . . , xn). Moreover, the honest parties learn the
correct output of the computation. All parties, honest or not, that participate on an SMPC protocol may
be considered as probabilistic polynomial-time (PPT) algorithms.

Besides the considerations related to parties, SMPC incorporates assumptions related to the communica-
tion model. The most common communication assumptions are the following. The existence of a broadcast
channel, through which someone may send messages to multiple recipients, simultaneously, and the exis-
tence of a secure (private) channel, which assumes that every communication between two end points is
authenticated. More uncommon communication assumptions are the existence of envelopes and the ballot
box. The former assumes that a party Pi may seal a message m of his choice into an empty envelope for a
specific time period t, and send the envelope to another party Pj . Then, the construction guarantees m’s
integrity and that Pj may learn the value of m only after the time period exceeds. The later, provides a
mechanism which randomizes the order of the envelopes. For more information on properties of envelopes
and ballot-boxes we refer the reader to [25], [24] and [32].

Regarding the delivery of the output to the parties, the following cases are being considered:

1. Output delivery: This model guarantees that the honest parties will receive the output of the
computation.

2. Fairness: In case fairness is enforced and at least on party learn their output, then, all the parties
learn the their outputs.
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3. Correctness and privacy: Here, the model ensures that honest parties receive only correct output
values. Furthermore, the secrecy of the inputs and outputs is being preserved.

For a detailed analysis on these concepts we refer the reader to [11] and [28]. Now we describe the crypto-
graphic tools that will be used throughout this text, together with their properties. Since those tools are
employed in a black box way, we do not provide technical details and in each case we refer the reader to the
corresponding texts.

2.1.1 Secret sharing

Consider a secret value s and group of parties P1, . . . , Pn. A t-out-of-n secret sharing is a method that: (i)
splits the secret into n pieces, (ii) distributes one piece to each party and (iii) guarantees that the secret
can be reconstructed only if at least t parties combine their shares. The combination of any t− 1 or fewer
shares preserves the secrecy of s.

Secret sharing can be interpreted as a special case of secure multi-party computation in which the
underlying functionality is the reconstruction of the share. The role of secret sharing in constructing SMPC
protocols will be made clear later on. For more details on secret sharing we refer the reader to [42].

2.1.2 Public key encryption

Suppose that we have two parties P1 and P2, such that P1 (sender) wants to send a message m (plaintext) to
P2 (receiver). A public-key encryption scheme allows the two parties to communicate securely without the
need to meet in advance and agree on any information. The receiver generates a pair of keys (pk, sk), called
the public key and the private key, respectively. Then, the sender uses the public key in order to encrypt
m and the receiver uses the private key to decrypt the encrypted version of m which is called ciphertext.
The encryption of m, c, is an encoded version of it, and one can decrypt c only if she knows sk. Concretely,
a public-key encryption scheme is a tuple of probabilistic polynomial-time (PPT) algorithms (Gen,Enc,Dec)
such that

1. Gen receives as input a security parameter and generates the pair of keys (pk, sk).

2. Enc is the encryption algorithm. It receives the public key pk and a message m and produces the
ciphertext c← Encpk(m).

3. Dec is the decryption algorithm. It receives a private key pk and a ciphertext c, and outputs a message
m.

For more details see [27].

2.1.3 Oblivious transfer

Consider the following scenario. There are two parties P1, P2. P1 possesses two pieces of information and
P2 wishes to receive one of the two pieces. A 1-out-of-2 oblivious transfer (OT) between the two parties
guarantees that P2 receives only the desired information, not both, while P1 remains oblivious as to what
information has delivered to P2. The protocol ensures that any deviation will not help P2 in learning which
message was delivered while P1 won’t be able to get both pieces. There are also interesting generalizations
of that protocol (1-out-of-n and k-out-of-n OT). For a detailed description of a 1-out-of-2 OT protocol we
refer the reader to [13].

2.1.4 Zero-knowledge protocols

Consider again two parties, P1 (prover) and P2 (verifier), such that P1 wants to convince P2 about the
validity of a statement without revealing any information besides what can be inferred from the validity of
the statement. For example, suppose that P1 wants to prove that she knows the prime factorization of n,
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where n = pq, without revealing any information about the primes p and q. A zero-knowledge (ZK) protocol
provides such a guarantee. In detail, its properties are the following.

1. Completeness: If both parties follow the protocol, and the statement is true, then the verifier will
be convinced with probability equal to 1.

2. Soundness: A deceitful prover cannot convince an honest verifier for the validity of a false statement,
except with some small (negligible) probability.

3. Zero-knowledge: In case the statement is true, a dishonest verifier can only learn that the statement
is valid, plus all the information she can infer given the validity.

ZK protocols are interactive, i.e., the parties need to exchange information. There is also a variant of ZK,
named non-interactive zero-knowledge. As the name suggests, these protocols do not consider interaction
between the prover and the verifier. The prover sends the proof to the verifier in one step, and the verifier
accepts or rejects. These constructions assume that parties share a common value, the common reference
string, before the execution of the protocol.

Another variant of ZK is unique zero-knowledge (uniZK) which works in a public-key setting. The prover
uses the public key in order to prove the validity of the statement and the verifier uses the secret key in order
to check the correctness of the proof. Moreover, if there is only one witness that justifies the validity of the
statement, then there is only one valid uniZK proof. For more details on ZK protocols and its variations we
refer the reader to [18], [6], [33].

2.1.5 Message authentication codes

A message authentication code (MAC) is used to provide authenticity and integrity assurances for a specific
message. Concretely, a MAC algorithm receives as input a message and a key, and outputs a MAC value.
This value allows anyone who possesses the secret key to verify the authenticity and integrity of the mes-
sage. So, given a message-MAC pair (m, c), in which the code c depends on key sk, the verifier checks if
MACsk(m) = c. A secure MAC guarantees that any polynomially bounded algorithm who is unaware of sk
cannot come up with a valid message-MAC pair, except with small probability. For more details see [27].

2.1.6 Commitment schemes

A commitment scheme allows a party to commit to a value v of her choice without revealing it to others.
Then, she may “open” the commitment and reveal the hidden value. The scheme ensures that the party
who committed to c won’t persuade the others that she committed to c′ 6= c, except with small probability.
A commitment scheme executes in two phases. The commit phase, in which the party who commits chooses
the value v and reveals the commitment c(v). The reveal phase, in which v is revealed and checked by
other parties. A secure commitment scheme guarantees (i) that anyone who observes c(v) cannot infer any
information about v (hiding), and (ii) any polynomially bounded algorithm cannot construct c(v′) = c(v),
where v 6= v′, except with small probability (binding). For details see [5], [12] and [18].

2.1.7 Trapdoor permutations

A trapdoor permutation family is a tuple of probabilistic polynomial-time algorithms (Gen, Sample, f , Invert)
such that

1. Gen(1n) is probabilistic and outputs (i, td), i.e., it produces an index i for a particular permutation
fi with trapdoor td. For any x that belongs to the domain of fi, and for any PPT algorithm A, A
cannot invert fi(x) unless she is given td. In other words, td is essential in order to efficiently invert
fi.

2. If i is the partial output of Gen, Sample(1n, i) is probabilistic and outputs an element x which is
uniformly distributed over the domain Di of fi.
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3. f is deterministic and f(1n, i, x) is just the evaluation of fi over x. Here we assume that i and x are
outputs of Gen and Sample, respectively.

4. Invert(1n, td, y) is a deterministic algorithm which inverts fi given the trapdoor td, i.e., it outputs an
x such that fi(x) = y.

5. For all n ∈ N, all (i, td) produced by Gen and all x that belong to the domain of fi we have that
Invert(1n, td, f(1n, i, x)) = x. Clearly, this implies correctness.

For further details on trapdoor permutations see [27].

2.2 Basic Notions from Game Theory

2.2.1 Normal-form games

The traditional game-theoretic concept considers a set of n parties, P1, . . . , Pn, a set of actions Si and a
function ui : S → R, for each party Pi, where S = S1 × . . . × Sn. Each party Pi chooses an action si ∈ Si,
all players play their actions simultaneously and each one receives utility (payoff ) ui(s1, . . . , sn). The utility
function of a party expresses the party’s preference over an outcome s = (s1, . . . , sn) (strategy-profile). The
key idea here is that parties are rational and choose their moves so as to maximize their utility. Such games
are called normal-form games with complete information. There are also games in which prior to choosing
their actions, a vector of private values t = (t1, . . . , tn) is sampled according to some distribution D, and
each Pi receives ti (normal-form games with incomplete information). Then, the parties play the game as
we discussed above. The difference is that Pi’s utility depends on both s and t. Therefore, in games with
incomplete information parties do not know the utilities of other parties, since the utility depends partially
on a private value. Now, a pure-strategy xi for Pi defines completely the action that will be taken by Pi

in every possible situation of the game. On the other hand, a mixed-strategy for Pi is a distribution over
the set of possible actions Si. Hence, in the former the parties make deterministic choices in every possible
game situation, while in the later, the parties act probabilistically. For details see [44] and [38].

2.2.2 Nash equilibrium

Informally, the idea of a Nash equilibrium is the following. Consider a set of n parties with strategy profile
s = (s1, . . . , sn), pure or mixed. Then, s is a Nash equilibrium if no party Pi has reason to deviate from
the strategy si, given the strategies of others. In other words, if Pi chooses s′i 6= si and all other parties
retain their initial strategies, then Pi receives utility no better than the one she would receive if she chose
si (weak Nash equilibrium). If Pi’s deviation leads to strictly lower payoff, then the equilibrium is classified
as strict Nash equilibrium. One of the most significant results in Game Theory states that every game with
a finite number of players and perfect information, in which each party can choose from finitely many pure
strategies has a (mixed-strategy) Nash equilibrium ([35]).

2.2.3 Correlated equilibrium

The notion of equilibrium presented above considers strategy profiles in which parties’ strategies are inde-
pendent. Considering players who choose their strategies independently of each other seems to be a quite
natural approach. Nevertheless, in many cases correlated strategies achieve higher expected payoffs. In
order to incorporate correlated profiles in games, a trusted party M , called mediator, has to be introduced.
The mediated game goes as follows. The mediator samples a correlated strategy profile s = (s1, . . . , sn)
according to some known distribution M, and privately recommends the action si to party Pi. Then, the
parties play as before by choosing an action s′i from Si. The recommended correlated strategy profile s is
a correlated equilibrium if each party Pi chooses s′i = si, i.e., if all parties have an incentive to follow the
actions proposed by the mediator. For a detailed presentation we refer the reader to [38].
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2.2.4 Coalition resilient equilibria

Up to now, we have considered parties who act individually in order to maximize their personal profit. A
more general approach is to allow parties to cooperate with each other by forming coalitions. According
to this setting, the members of a coalition coordinate their actions so as to maximize their total utility. A
strategy profile s is a k-resilient Nash equilibrium if for any coalition of size at most k, no member of the
coalition improves her utility by choosing a different strategy from the one that is being indicated by s. For
more details see [11].

2.2.5 Computational Nash equilibrium

In order to study the interconnection between Game Theory and Cryptography one has to adapt game-
theoretic notions, such as games and Nash equilibria, to the cryptographic setting. According to that
setting a computational game is a game as described above which also satisfies the following assumptions:
(i) the parties are probabilistic polynomial-time algorithms, and (ii) the utility functions can be computed
in polynomial time. Now, let s = (s1, . . . , sn) be a strategy profile, where si denotes Pi’s choice. Then s is
a computational Nash equilibrium if for every Pi, every possible action s′i 6= si and regardless of what any
other players do, deviating from si by choosing s′i results in at most a negligible increase on the utility of
Pi. For a formal definition see [11], and [10].

2.2.6 Extensive form games & cheap talk

Normal form games are special case of extensive form games. The main difference between those types is
that in the former the parties act in one step, while in the latter each party may be active for more than one
round, and consequently, her utility depends on the actions taken during the entire execution of the game.
A special case of extensive form games are those that incorporate the so-called cheap-talk phase, prior to the
execution of the original game. During the cheap-talk phase the parties execute some protocol by exchanging
messages through channels that achieve certain properties. After the completion of the cheap-talk phase,
the original game begins. The parties’ interaction during the cheap-talk phase does not affect their utility,
that’s why this phase is called “cheap talk”. The parties’ utilities depend only on the actions taken during
the execution of the original game.

2.2.7 Dominated strategies & iterated deletion

A strategy s is weakly dominated by s′ if there exists an opponent’s strategy profile for which s gives lower
payoff than s′, while in all other cases s′ yields payoff no worse than the one that results when choosing
s. In the same way, s is strictly dominated by s′ if, regardless of what any other players do, choosing s
yields a worse payoff than choosing s′. Now, as its name suggests, iterated deletion of dominated strategies
is a procedure which iteratively removes dominated strategies. Clearly, this procedure eliminates strategies
that no rational player would ever follow. Regarding its “strict” version, if after the iterative deletion of
strictly dominated strategies there remains only one strategy for each party, then the corresponding strategy
profile is the only Nash equilibrium. On the other hand, the elimination of weakly dominated strategies may
eliminate some Nash equilibria, and clearly, the resulting equilibrium may not be unique. In the context of
this text, we are primarily interested in Nash equilibria that survive iterated deletion of weakly dominated
strategies. For more details see [11].

2.2.8 Non-cooperatively computable functions

We informally present the notion of non-cooperatively computable functions by considering the following
game. A set of parties, where each one of them possess a private input, needs to evaluate a public function
f on those inputs. Each party sends the input to a trusted entity through a private channel, the trusted
entity evaluates f on the given inputs and returns the output to the parties. Here we assume that parties
are rational, and primarily prefer getting the output of the function than not getting, and secondly, they
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prefer that other parties receive an incorrect output. In such a setting, if parties have clear incentive to
submit their true inputs, then f is a non-cooperatively computable (NCC) function. For example, the XOR
function which receives n bits and outputs the exclusive or of those bits, is not an NCC function. In order
to see this, consider the following scenario. Assuming that all other parties consign their true inputs and
party Pi lies about her input, the trusted entity computes the XOR on the given inputs and returns the
output y. Then, Pi simply computes ¬y and is the only party who learns the correct output. Clearly, Pi has
an incentive to lie since she can reconstruct the correct function output. On the other hand, the majority
function is an NCC function since a party who consigns a false input will not be able to reconstruct the
correct value. For more details on NCC functions we refer the reader to [43].
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Chapter 3

Overview of Existing Work

3.1 Using Game Theory within SMPC

As we have already discussed in previous chapters, SMPC considers a set of n parties P1, . . . , Pn, where
each party Pi possesses a private input xi, 1 ≤ i ≤ n, and they all wish to jointly compute and learn
y = f(x1, . . . , xn), under the condition that each Pi will not learn any information related to the private
inputs of the other parties. Moreover, each party may be honest or malicious. On the other hand, the game-
theoretic approach of SMPC considers the case where some, or all of the parties are rational and follow the
protocol only when they have an incentive to do so. Therefore, for each rational party Pi, we introduce a
utility function ui, which depends on the security parameter k, the transcript of the SMPC protocol and
apparently on the choices made by Pi during the execution. In each protocol round, each rational party
Pi acts so as to maximize ui, with respect to the actions of the other parties, and the initial protocol has
been reduced to a multi-round game for which we try to achieve different kinds of equilibria. The major
point here is how to choose the utility function, or the class of utility functions so that rationality with
respect to an SMPC protocol is being obtained. In the general case and out of the game-theoretic context,
the following cryptographic properties seem to be a good starting point so that a utility function is being
defined based on these properties ([11]):

1. Correctness: Correctness for a specific party Pi, indicates that Pi wishes to compute the correct
output of the function f .

2. Privacy: Privacy for a party Pi indicates that the party wishes to keep her input private during and
after the completion of the protocol execution.

3. Exclusivity: This property refers to the party’s desire to be the only one who learns the correct
output of the function f .

4. Voyeurism: Here, the party wishes to learn as much as possible about the other parties’ private
inputs.

Regarding the properties listed above, most of the works that will be presented in subsequent sections build
utility functions based on correctness and exclusivity, and furthermore, it is assumed that the parties prefer
the former over the later. Concretely, each party Pi prefers to get the correct output even if her private
input becomes public after the execution, and secondly, each Pi wishes to be the only one who learns the
output of f correctly. Regardless of the choice of the utility functions, the works presented in the rest of the
chapter consider a variety of assumptions with respect to the communication model, such as secure channels,
broadcast channels, envelopes and ballot boxes which have been mentioned in the preceding chapter. In the
following sections we give a high-level overview on some major results in rational SMPC (RSMPC).
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3.1.1 RSMPC based on rational secret sharing

A quite general technique is to construct RSMPC protocols by using rational secret sharing (RSS) as the
main building block. In other words, the game-theoretic ideas presented previously are being applied on the
underlying RSS protocol. In this section we give a high-level overview of such protocols, but before doing
so, we briefly present two impossibility results.

On the impossibility of deterministic RSS and RSMPC. In [22] the authors present impossibility
results regarding RSS and RSMPC in which the underlying functionality corresponds to fair exchange
of secrets. The utility function considered is the one we described in the preceding paragraph, i.e., the
parties primarily prefer correctness, and secondarily, they prefer exclusivity. Regarding the communication
assumptions, the authors assume the existence of private-broadcast channels. Concretely, each party Pi

possesses an additive secret share xi with respect to a secret x =
∑n

1 xi and the impossibility result states
that there is no deterministic protocol in each round of which the parties behave rationally and after its
completion the protocol outputs the reconstructed x. Informally, the impossibility result goes as follows.
Suppose the existence of a protocol which reconstructs x and assume that we are in the final protocol round
in which the parties have to broadcast the shares computed in the preceding round. The core of the proof
lies in the fact that sending out the output share cannot increase the utility of the party, and furthermore,
the party’s utility might be decreased if another party learns x (recall that exclusivity matters). In other
words, sending out the output share in the final round is weakly dominated by the choice of not sending out
the share. In order to see this, consider a party Pi with share xi. Then, the protocol meets the following
intuitive properties.

1. Since there is a broadcast channel, all the final shares are being sent simultaneously, and Pi’s decision
on sending out the share does not affect the decisions of the other parties.

2. The correctness of the reconstructed secret share is not being affected by Pi’s decision to send out the
share or not.

3. If Pi decides not to send out his share, then he may prevent other parties from reconstructing x.
Furthermore, if a sufficient number of parties decide to send out their shares, then Pi might be the
only one who reconstructs x. Therefore, Pi might obtain exclusivety.

The above properties constitute an informal justification of the fact that there is no incentive for the
rational parties to follow the protocol, and the impossibility follows. [22] also gives impossibility results
for any protocol, deterministic or not, and for the case of two parties, but as we will discuss later, a slight
modification in the model leads to positive results.

Leaving behind the impossibility results, [22] presents randomized constructions for RSS and RSMPC.
The key idea of the RSS protocol is the following. Each protocol round may be a test round in which the
output returned to the parties is useless or it may be the final round in which the protocol outputs the
reconstructed secret share. Furthermore, the parties do not know if the current round is a test round or
not, and if a party deviates from the protocol on a specific round, the other parties abort. Informally, and
for the 3-out-of-3 case, in each protocol round

1. A dealer sends to each party a new share of the secret input.

2. Each party flips a coin ci which is equal to 1 with probability α. For more information regarding the
value α we refer the reader to [22].

3. The parties execute a normal SMPC protocol so as to compute c∗ =
⊕
ci.

4. Party Pi broadcasts its share if c∗ = ci = 1. If all parties send out their shares the secret is being
reconstructed and the protocol terminates. If c∗ = 1 and we have 0 or 2 shares, or if the parties do
not follow the SMPC protocol of the previous step, the protocol aborts.

12
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The above protocol gives a Nash equilibrium that survives iterated deletion of weakly dominated strategies
and the case for n > 3 is similar. For further details we refer the reader to [22].

The RSMPC protocol proposed in [22] is based on the aforementioned RSS and the construction presented
in [17]. Informally, the protocol goes as follows.

1. Each party Pi computes an n-out-of-n secret share for her private value xi and sends out a share to
each one of the n− 1 parties.

2. The parties communicate so as to simulate the execution of a circuit which computes the value of f
given the secret shares of the private inputs. In other words, the protocol simulates a circuit with gates
that take as input secret shares of the real values and output the corresponding secret shares of the
outcome. After the normal termination of this step, each Pi holds a share of the value f(x1, . . . , xn).

3. In the final step, the parties execute the RSMPC protocol presented above so as to reconstruct the
value of f(x1, . . . , xn).

Here, the authors assume that f is a non-cooperatively computable (NCC) function, and therefore, the par-
ties have clear incentive to provide their real private inputs.

An improvement of [22]. The work presented in [20] considers the same utility functions as in [22].
Moreover, regarding the communication assumptions they assume the existence of simultaneous broadcast
channels. The RSS protocols presented in [22] and [20] are quite similar. Their main difference is that in
each iteration the former allows the parties to probabilistically choose between two actions, i.e., to send
their share or not, while in the later the parties are forced to send the shares that were given to them by
the dealer at the beginning of the round. In [20] the dealer is the one who makes the probabilistic choice
and sends out shares of the private input s ∈ S with probability β, where S is a strict subset of a finite field
F, or sends the shares of an arbitrary value ŝ ∈ F\S with probability 1 − δ. Initially, each party holds the
variable F with value equal to 1 which indicates if malicious behaviour has been detected, and each protocol
round considers the following steps:

The RSS protocol round of [20]:

1. With probability δ the dealer computes a t-out-of-n share of the private value s ∈ S and with proba-
bility 1− δ she computes a t-out-of-n random share of an arbitrary element ŝ ∈ F\S. Then, she sends
out the shares.

2. If F = 1, each party broadcasts the value received by the dealer. Otherwise, do nothing.

3. If the parties broadcast at least t shares, a value s′ is being reconstructed and if s′ ∈ S, then s′ = s
and the protocol terminates.

4. If all parties broadcast their shares and the reconstructed value is s′ ∈ F\s, then the secret is invalid
and the protocol proceeds to the next iteration.

5. Otherwise, set F = 0 and proceed to the next iteration.

The modification on the dealer’s behavior circumvents the impossibility presented in [22] for the case where
n = 2. Note, that even after the detection of unwanted behaviour the protocol does not terminate. Never-
theless, the “honest” parties do nothing for the rest of the execution. [20] also provides an inefficient, as it is
being characterized by the authors, RSS protocol which does not depend on the existence of the dealer. The
above protocol is a Nash equilibrium for t-out-of-n secret sharing that survives iterated deletion of weakly
dominated strategies. For further details we refer the reader to [20].

Now, as in [22], the above protocol constitutes the main building block for the following RSMPC protocol.
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The RSMPC protocol of [20]:

1. The parties execute an SMPC protocol so as to compute the following function f ′: on input x1, . . . , xn
generate a t-out-of-n sharing, (s1, . . . , sn), for y = f(x1, . . . , xn) and give si to Pi. If a party aborts,
then the entire protocol aborts and the secret value cannot be reconstructed.

2. The parties compute the following functionality f ′′: it takes as input (s1, . . . , sn) and with probability
β computes a random sharing, (s′1, . . . , s

′
n), of the value y, and with probability 1 − β computes a

random share for some predetermined value that does not belong in the range of f . Each Pi receives
s′i and if a party aborts, then the entire protocol aborts and the secret value cannot be reconstructed.

3. The parties simultaneously broadcast the s′i and reconstruct the corresponding value.

(a) If some party did not broadcast her share, then all other parties terminate the protocol.

(b) If the reconstructed value is in the range of f then it is equal to y and the parties learn the output
of the function.

(c) In any other case the protocol proceeds to the next iteration.

As in [22], [20] assumes that f is an NCC function. For further details regarding the proofs and the protocol
construction we refer the reader to [20].

Coalition-resilient secret sharing and SMPC. In [29] the authors consider utility functions according
to which the parties prefer getting the protocol output to not getting it (correctness). Regarding the
communication assumptions, they assume the existence of simultaneous broadcast channels. The new twist
in this work is that (i) the model allows parties to form coalitions of size k, (ii) they assume that parties
may perform polynomial time computation during each iteration in order to gain knowledge and maximize
their utility according to it, and (iii) the protocol retains its properties even if it executes for exponentially
many rounds on the size of the security parameter. The proposed protocol is a k-resilient computational
Nash equilibrium.

As it is stated in [29], the previous works do not satisfy (iii), and to see this consider the following
example. Suppose that in each iteration the parties perform polynomial time computations so as to break
by exhaustive search the key of the underlying cryptographic primitive. After exponentially many rounds,
say r, some party will finally find the key, and therefore, has no reason to participate in round r+ 1. Using
the same argument as in [22], the authors conclude that the parties have no incentive to participate even in
the first round of the protocol.

In order to achieve property (iii), the authors introduce a new primitive called meaningful/meaningless
encryption, which is a public-key encryption scheme with the property that some public keys produce ci-
phertexts that cannot be decrypted even by computationally unbounded adversaries. They call those keys
meaningless while the others are called meaningful. For more details regarding meaningful/meaningless
encryption we refer the reader to [29]. Now we give a high-level overview of the proposed RSS protocol.

The RSS protocol of [29]:

1. The dealer distributes an m-out-of-n share to the parties. She also provides the parties with two
functions. Using the first function, the parties authenticate the shares broadcast by the others, and
the second, allows a party to prove the authenticity of the share that she possesses.

2. As in the protocols presented previously, each protocol round is the final with probability δ. In each
iteration of the protocol the following steps are being executed:

(a) (Key generation) A traditional SMPC protocol is being executed, which receives no input and
uses a random seed so as to generate private and public keys for a β-meaningful-meaningless
encryption protocol. Each party is given a share of the seed, a binding commitment to that seed
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and her corresponding public key. The public key generated is meaningful with probability β and
the protocol terminates on that round.

(b) (Encryption) Each party encrypts the share of the secret and authentication information using
the public key generated above. Then, she broadcasts the ciphertexts which are being validated
using another traditional SMPC protocol.

(c) (Verification) Each party authenticates the seed’s shares using the received commitments and
regenerates the private key so as to determine if the iteration is meaningful. In such a case, she
decrypts the ciphertexts and uses the retrieved information to authenticate the retrieved secret
shares using the authentication functions that she was given. The verification step is valid if (i)
each share is valid with respect to its corresponding commitment, and (ii) in a meaningful round
the ciphertexts are valid with respect to the secret shares and the authentication information.

(d) (Reconstruction) If the verification step succeeds, the parties simultaneously broadcast the
shares of the seed that they possess. The seed is being reconstructed and each player determines
if the iteration is meaningful, and in case that it is, she decrypts the ciphertexts and reconstructs
the secret value. Otherwise, the protocol proceeds to the next round.

The RSMPC protocol of [29] constitutes a combination between the above protocol and Yao’s Garbled Cir-
cuit. Informally, a Garbled Circuit constitutes the encrypted version of the original circuit in which the
entire computation is being executed on encrypted (garbled) values. The circuit receives garbled inputs,
each circuit wire is being assigned two garbled strings, the first for the value 0 and the other for the value 1
and its gates contain information (gate tables) so as to produce valid garbled outputs. The garbled circuit
computation reveals no information except the result of the evaluation. For more details on the construction
we refer the reader to [46]. The proposed RSMPC constitutes a modification of the rational secret sharing
protocol described above.

From RSS to RSMPC in [29]:

1. (Garbled Circuit creation) In each protocol round a new Garbled Circuit is being created with
respect to f . The gate tables and commitments for the two garbled strings which correspond to each
input wire are being published in a way such that the correspondence remains secret. Moreover, each
party is given an n-out-of-n share for each garbled string assigned to an input wire and commitments
to all shares are published.

2. (Obtaining garbled inputs) Two garbled strings have been assigned to each input wire, one for the
value 0 and one for the value 1. For all input wires, each player obtains all the shares of the garbled
string of the input wire that corresponds to the value of that wire, using a 1-out-of-2 oblivious transfer
protocol. Therefore, the parties receive the garbled values that correspond to their input bits without
revealing any information. Besides the 1-out-of-2 OT protocol, this step incorporates a zero-knowledge
proof which ensures the validity of the exchanged information. For more details see [29].

3. (Encryption and verification) Using the β-meaningful-meaningless encryption scheme the parties
encrypt the garbled versions of their inputs. During the verification step each party decrypts the
ciphertexts and obtains the garbled string for each input bit. Then, she verifies that the garbled value
is valid with respect to one of the commitments that were published during the circuit creation step.

The above protocol is a coalition-resilient computational Nash equilibrium which retains its properties even
if it executes for exponentially many rounds. Overall, it incorporates a traditional SMPC protocol, a 1-
out-of-2 oblivious transfer protocol and a commitment scheme. In the last section the authors consider
non-simultaneous broadcast channels in which there is only a single sender per protocol round and show
how to run the above protocols under such a communication model. For proofs and more technical details
we refer the reader to [29].
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3.1.2 The mixed-behaviour model

In contrast to the models considered so far, [34] considers a mixed behaviour model, where some parties
are rational and follow a specific strategy only if they maximize their utility function, and some others may
be adversarial and act arbitrarily. The goal is the same as in the traditional SMPC with respect to the
mixed-behaviour model (MMPC). Moreover, the authors assume the existence of a synchronous broadcast
channel, and that all parties, rational and adversarial, are computationally bounded. They also allow covert
channels and steganography, i.e., they permit message exchange which is undetectable by honest parties.
Regarding the utility functions, and in contrast to [22], the main assumption is that the parties prefer to
follow the protocol and consign the true private input.

The protocol construction incorporates the SMPC protocol presented in [17], and each party provides a
zero-knowledge proof that all the information sent by her side are valid with respect to the prescribed protocol
steps (verifiable SMPC). Now, let P1, . . . , Pn be the parties that want to jointly compute y = f(x1, . . . , xn),
where xi is the private input of Pi. Recall that each Pi may be rational or adversarial, and the rational
parties have clear incentive to follow the protocol and contribute the true inputs. A high-level description
of the protocol goes as follows.

The RSMPC protocol of [34]:

1. (Randomness initialization) During the initialization phase the common random string which is
being incorporated in the SMPC and non-interactive zero-knowledge, is being defined.

2. (Input commitment) After the completion of the input commitment phase, each party is committed
to its private input xi.

3. (Secret sharing) Using a verifiable SMPC protocol the parties construct with probability 1
2 an m-

out-of-n secret share of y = 0 or of y = f(x1, . . . , xn). Clearly, the protocol works only if f(x) 6= 0, for
all x.

4. (Broadcasting) Each party broadcasts the share of y computed in the previous step, together with
a non-interactive zero-knowledge proof of correctness.

5. (Verification)

(a) If there are fewer than n correct shares, then abort.

(b) If there are correct shares and f(x1, . . . , xn) 6= 0, then the parties have obtained y.

(c) If f(x1, . . . , xn) = 0, go to step 3.

Overall, in every protocol round each party computes a zero-knowledge proof which guarantees that the
parties’ output in round q is consistent with the protocol steps, the data received in round q− 1, the private
input value and the initial randomness. Therefore, each party is able to verify the actions of the other
parties (verifiable SMPC) and deviation from the prescribed protocol for a party leads the other parties to
abort with high probability. Furthermore, the security properties of the SMPC protocol guarantee that the
value of f(x1, . . . , xn) remains private.

The defined protocols is a Nash equilibrium that survives iterated deletion of weakly dominated strategies
only if m+ 1 or more participants are rational. On the contrary, suppose that there are m rational parties.
Furthermore, suppose that one of them, Pi, deviates from the prescribed protocol. If Pi chooses not to send
out his share, then with probability 1

2 all the other parties abort or not from the protocol. In the second case,
and if y 6= 0, Pi learns the output of the function and her utility function is being maximized. Apparently, Pi

has an incentive to deviate from the protocol. Now, if there are m+1 rational parties and Pi is the only one
who deviates from the protocol, then if y = 0, the other parties will abort, otherwise, the m parties will learn
the correct output of the protocol, regardless of the strategy of Pi. Clearly, there is no incentive for Pi to
deviate from the protocol. For more details regarding the protocol and its security we refer the reader to [34].
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3.2 Using SMPC within Game Theory

As we have already mentioned in Chapter 2, there are many games in which the existence of a trusted
party (mediator) who assists the parties in choosing their strategies (correlated equilibria) leads to expected
payoffs higher than the case where the mediator is absent (Nash equilibria). In this section we revise some
interesting applications of SMPC within Game Theory, and more precisely, we focus on techniques that sub-
stitute the mediator with protocols that realize the mediator’s functionality and they are provably secure.
In the unmediated game the parties have a clear incentive to follow the prescribed protocol and they receive
payoffs equal to those of the mediated game. In other words, the security guarantee is that the parties
cannot distinguish between the two games, i.e., in the eyes of a player, the unmediated game is exactly
the same with the mediated. Finally, for games that consider a cheap-talk phase, the same techniques are
employed in order to securely implement the interaction between parties during that phase.

Eliminating the mediator using the minmax punishment. In [10] the authors consider two player
strategic games in which there are two players and each one of them has a set of possible strategies. They
manage to eliminate the mediator under the following assumptions: (i) they assume that parties are proba-
bilistic polynomial time algorithms, and (ii) they consider games in which a cheap talk phase precedes the
original game. As we have already discussed in previous chapters, during the cheap talk phase the parties
may exchange messages for free, i.e., the interaction between parties during the cheap talk phase does not
affect their utilities.

Now we give the basic idea of [10]. Consider a game G and a correlated equilibrium for that game.
For the two party case, the role of the mediator is to sample a pair of strategies (s1, s1) according to a
predefined distribution and give si to party Pi. As we have already stated, the mediator is like a trusted
party who computes the pair (s1, s1) and sends the results to the parties. The key idea is to incorporate
a cryptographic protocol that securely computes the mediator’s functionality. The proposed strategy for
each player would be to follow the protocol, and then, play the strategies that were indicated by that. But
what if one of the parties deviates from the prescribed protocol steps? The authors consider a punishment
method for those who deviate. Specifically, if a party cheats at some point, the other party plays a strategy
which achieves the minmax payoff for the cheating player, which is the smallest payoff the one player can
impose to the other. The authors prove that the proposed strategy is a computational Nash equilibrium.
The main result of [10] is the following.

Let G be any two player strategic game and let G′ be the extended game of G. If secure two-party protocols
exist for non-trivial functions, then for any correlated equilibrium s of G there exists a computational Nash
equilibrium σ of G, such that the payoffs for both players are the same in σ and s.

In an effort to provide efficient implementations for the underlying cryptographic protocols, the authors
make the following observation. In two player strategic games the strategies of the parties define a pair
(s1, s2), where si denotes party’s i strategy, and the problem reduces in choosing randomly a pair from the
set of all different strategy combinations. Therefore, a secure protocol for the Correlated Element Selection
problem induces a solution for the games considered in [10]. Informally, the Correlated Element Selection
problem is the following: we have two parties P1, P2, and a list of pairs (α1, β1), . . . , (αn, βn), and the parties
need to jointly choose a random index i in a way such that P1 learns only the value of ai and P2 learns only
the value of bi. The authors propose two protocols that solve the aforementioned problem. The first deals
with the case where the parties are honest-but-curious and the second considers malicious parties.

The proposed protocols rely on a cryptographic primitive called blindable encryption, which is a public-
key encryption scheme that satisfies the following property. If c is the encryption of the message m, then
one is able to produce the encryption of m + m′ for some m′ of her choice by only using c and the public
key (blinding). Moreover, one may combine many blindings into one using the schemes’ corresponding func-
tionality (combine). As the authors suggest, one may use the ElGamal or the Goldwasser-Micali encryption
schemes as building blocks for blindable encryption schemes. Also, any homomorphic encryption scheme
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provides the necessary blinding functionality. We now present the proposed protocols for two parties, P and
C.

Protocol for honest-but-curious parties:
Input : list of pairs (ai, bi)

n
i=1, public key pk.

Only P knows the secret key sk.

1. P creates a random permutation of the list, encrypts randomly each element of the permuted list and
sends the resulting list to C. By the properties of the encryption scheme the permutation remains
secret in the eyes of C.

2. C chooses randomly a pair of ciphertexts (cl, dl) from the permuted list. The decrypted elements of
(cl, dl), denoted by (α, β), constitute the output of the algorithm. C blinds cl with 0 and dl with a
random element r. The resulting pair is denoted by (e, f). C sends (e, f) to P .

3. Since the blinding of α with 0 produces e, P decrypts e and gets α. The decryption of f gives β̂ = β+r,
and therefore, β remains hidden in the eyes of P . Then, P sends β̂ to C.

4. C computes β̂ − r and receives β.

The protocol outputs a random pair (αi, βi). Moreover, P learns no information about β other than it is
implied by her own output, and symmetrically, C learns no information about α other than what is implied
by her own output. In the former, the argument is information-theoretic since β is blinded by a random
value r, while in the later the argument is computational.

Protocol for malicious parties:
Input : list of pairs (ai, bi)

n
i=1, public key pk.

Only P knows the secret key sk.

1. As in the first step of the “honest” case, P creates a random permutation of the list, encrypts randomly
each element of the permuted list and sends the resulting list to C. Additionally, P uses zero-knowledge
to prove that she knows the permutation and the randomness that she used in order to construct the
encrypted pairs.

2. Again, C executes the instructions defined in the second step of the “honest” case, and then, she
proves that she knows the randomness and the index used in order to produce (e, f).

3. P decrypts (e, f) and gets (α, β̂), where β̂ = β + r. Then, using zero-knowledge, P proves that β̂ is
indeed the decryption of f . Finally, P sends to C the permuted list of pairs (bi, si), where si denotes
the randomness used to encrypt bi.

4. Let (b, s) be the l-th entry of the permuted list sent by P . C encrypts b using the randomness s, and
checks if the result equals to dl. If so, she outputs b.

As in the honest-but-curious case, the only information revealed to each party regarding the output of the
other party, is implied by their own output. The authors prove that the above protocols securely compute
the function that corresponds to the Correlated Element Selection problem. For more details regarding the
proofs and some analysis related to the efficiency of the protocol we refer the reader to [10].

Improvements for [10]’s protocol. In [45] and [4] the authors propose some refinements for the pro-
tocol presented above, both for the honest-but-curious and the malicious settings. They are doing so by
improving [10]’s protocol for the Correlated Element Selection problem. Specifically, the protocol of [45] is
efficient with respect to both the security parameter and the required probability distribution. As in [10],
the proposed protocol of [45] relies on blindable encryption schemes. [4] improves the work of [45] on the
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correlated element selection problem and presents a protocol whose worst-case complexity is exponentially
better. The protocol for the honest-but-curious setting relies on the homomorphic Pailier encryption scheme
([39],[8]). For the malicious setting the authors employ the Homomorphic ElGamal encryption scheme and
construct a (t, n)-threshold cryptosystem, 0 < t ≤ n, in which the key is generated jointly by n parties and
the encryption is performed as in every public-key encryption scheme. The main difference here is that the
decryption succeeds only if at least t parties participate. For more details regarding those protocols we refer
the reader to [45] and [4].

Coalition-safe cheap-talk . In the first part of [32] the authors present a completely fair SMPC protocol
which is secure for any number of malicious players, based on standard assumptions on the communication
model and computational assumptions. Specifically, they assume the existence of envelopes and they em-
ploy zero-knowledge proofs together with the construction of [17]. Although the first part of [32] is quite
interesting from a cryptographic perspective, it does not incorporate any game-theoretic notions. Since we
are primarily interested in the interplay between Game Theory and Cryptography, we skip the first part
and by taking the SMPC protocol for granted we discuss applications of such a protocol in game-theoretic
notions. Therefore, we proceed to the second part of the paper.

In the standard game-theoretic setting the steps of a mediated game with complete information are the
following: (i) the mediator samples according to some distribution a vector of strategies (s1, . . . , sn), one for
each party, and sends si to Pi, then, (ii) the game begins, the parties choose a strategy and they receive the
corresponding payoffs. [32] allows the parties to form coalitions which, as we have already discussed, is like
having an external party (algorithm A) who controls any number of parties and imposes a strategy profile
on them. Therefore, they consider the following steps.

A mediated game with coalitions:

1. The mediator samples a vector of strategies (s1, . . . , sn) and sends si to Pi.

2. A chooses a number of parties, and for each such party Pi, A requests si.

3. A imposes a strategy s′i on each of the parties that she controls.

4. The parties choose their strategy. If a party belongs to the coalition she chooses s′i, otherwise, she
chooses si. Finally, the parties receive their payoffs.

[32] uses the proposed fair SMPC protocol in order to implement a cheap-talk protocol that eliminates the
mediator. Informally, let G be a game, E a correlated equilibrium for G and CT = (s1, . . . , sn) a protocol.
Then, CT is a cheap-talk protocol that implements E, if a random execution with an adversary produces
output distributed according to E. A coalition-safe cheap talk protocol guarantees that for any coalition
of parties, the advantage received by the coalition during the extended game in which the parties execute
the cheap talk protocol, can also be obtained by the same coalition when they participate in the original
mediated game. We now give the main result as it is stated in Theorem 2 of [32]:

Given completely fair SMPC protocols for any efficient function f , then, for any game G and any correlated
equilibrium E for G, there exists an efficient, coalition-safe, cheap-talk protocol CT = (s1, . . . , sn) such that
the strategies in the extended game consisting of “following CT and then playing in G the finally computed
recommendation” form a computational Nash equilibrium with payoffs indistinguishable from those of E.

For details concerning the SMPC construction and for an informal proof of the above statement, see [32].
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3.3 Bidirectional approaches

In this section we review works that touch both direction, i.e., they incorporate game-theoretic notions on
SMPC and vice versa.

Another improvement of [22]. In [1] the authors give an RSS protocol which is a k-resilient Nash
equilibrium that survives iterated deletion of weakly dominated strategies. In addition, they show that the
proposed protocol can be used to simulate games with mediators by games without mediators. The con-
sidered model assumes that parties prefer getting the output to not getting it (correctness), and regarding
the communication assumptions, the authors assume the existence of private channels. Nevertheless, under
the existence of specific cryptographic primitives that imply oblivious transfer and polynomially bounded
adversaries, public channels are sufficient. Again, the proposed RSS protocol is used as a basis for the final
RSMPC protocol and the main idea of the construction is similar to those presented in previous sections,
both for the RSMPC protocol and the transition from RSMPC to RSS. Therefore, we omit the protocol
details and we refer the reader to [1]. We now highlight the improvements of [1] over the work presented in
[22] as they are listed in [1].

The improvements of [1] over [22]:

1. In [22] the proposed protocol is a 1-resilient Nash equilibrium, while in [1] the RSS protocol is (n− 1)-
resilient, where n is the number of parties.

2. In contrast to [22], the protocol of [1] works for n = 2. Recall that we also have the same improvement
in [20].

3. Both [22] and [1] need to know the parties’ utility functions in order to define the probability according
to which a protocol round is the final round. However, in [1] they prove that if k < n/3, then their
construction works for all choices of numerical utility, as long as the parties do not strictly prefer not
learning the secret to learning the secret.

4. Finally, [1] considers a number of parties whose utilities may be unknown or nonstandard. As the
authors indicate, if the number of parties is large, then there might be some “altruists” who maximize
their utilities if more parties learn the secret.

5. The protocol of [1] can be used to simulate any mediated game by a game without a trusted mediator.

Concerning the substitution of the trusted mediator with an RSMPC protocol, the authors consider two
different cases: (i) a punishment strategy, (ii) they replace the use of the punishment strategy by using
Reed-Solomon decoding, verifiable secret sharing and the construction presented in [17]. For further tech-
nical details we refer the reader to [1].

Collusion-free protocols. In [31] the authors provide formal definitions for collusion-free protocols and
prove the existence of such protocols under standard physical and computational assumptions. Specifically,
they assume the existence of broadcast channels and envelopes, and regarding the computational assump-
tions, they assume the existence of trapdoor permutations.

As it is discussed in [31], in order to prevent a coalition from arising, there should be employed mecha-
nisms that detect extra communication, i.e., communication which is not specified by the protocol and allows
the “bad” players to coordinate their actions. Clearly, private channels do not provide such mechanisms
since they would allow bad players to privately exchange any message of their choice while being undetected
by honest parties. The same argument holds if the communication is based on envelopes. So, how do the
authors provide collusion-free protocols under the existence of envelopes? The answer is that [31] employs
envelopes only during a pre-processing stage, i.e., before the game begins. During that stage the malicious
parties have no reason to coordinate their actions since they have not been provided any useful information
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related to the game. The main result of [31] is the following.

“If trapdoor permutations exist, any finite, partial-information game with publicly observable actions has a
collusion-free protocol whose communication channels consist of broadcast and plain envelopes.”

A game has publicly observable actions if any action taken by a specific player becomes instantly known to
all players. Now, in order to define collusion-free protocols [31] treats protocols as games and then considers
the ideal and real implementations of those games. The ideal implementation incorporates a trusted party
that is being eliminated on the real implementation. Then, collusion-freeness ensures that any collusion of
parties cannot distinguish between the real and the ideal setting.

The finite games considered in [31] execute in rounds and in each round there is only one active player
P , who may be honest or may collude with other parties. Moreover, the active player for round j is deter-
mined by some function TURN(j), which is part of the game definition. Then, a probabilistic function that
depends on the game’s global state and the active player’s strategy is being evaluated, and outputs the new
global state and a partial output for each party. Prior to the ideal execution of the game the trusted party
generates the initial global state together with the randomness used to evaluate the probabilistic functions
in every round. Informally, each round of the ideal game of [31] considers the following steps.

The j-th round of [31]’s ideal game:

1. Suppose that we have n parties and on round j party Pi is active, i ∈ {1, . . . , n}. If Pi is honest, then
she evaluates a predefined function Hj

i which depends on her local state so as to compute a strategy

xji for the current round. If Pi belongs to the set C of colluding parties, then the model considers an

efficient adversary AC who computes the strategy xji on behalf of Pi. In each case, xji is being sent to
the trusted party.

2. The trusted party computes (σj+1, yj1, . . . , y
j
n) = gj(σj , xji ), where gj is the probabilistic function of

round j, σj is the game’s global state at round j, σj+1 is the new global state and yjk, 1 ≤ k ≤ n, is
the function’s partial output for player Pk.

3. The parties receive the output one-by-one in lexicographic order. Suppose that party Pi is about to
receive the value yji . First, the trusted party asks all the other parties if Pi should receive the partial

output. If there is no objection, Pi receives yji , otherwise, the trusted party informs all players that
the game has been aborted.

In the real world scenario there is no trusted party and the above game is executed by a protocol Π between
the parties. Informally, the protocol Π is a collusion-free realization of game G if the real and ideal worlds
are indistinguishable in the eyes of any coalition of up to n − 1 parties, where n denotes the total number
of parties.

The proposed protocol, Π, consists of two subprotocols, Π1 and Π2. Π1 is executed first, is probabilistic
and takes no private inputs, uses broadcast channels and envelopes, and does not incorporate any part of the
actual game (game independence). On the other hand, Π2 is deterministic and receives private input which
is the player’s history from the execution of Π1. Moreover, it ensures that honest parties can verify that
the only non-deterministic choices for a player in Π2 correspond to actions of the original game (verifiable
uniqueness). A high-level and compact presentation of the protocol steps follows: (i) Π1 is executed so as to
generate randomness that will be used by Π2, and (ii) the players execute Π2, which is a traditional SMPC
protocol that implements the original game and uses randomness provided by Π1. The protocol is based on
the construction of [17].

During the execution of Π2 the honest parties need to be sure that all parties utilize randomness provided
by Π1. Therefore, each player needs to provide a zero-knowledge proof that she properly executes P2.
However, and as the authors suggest, since ZK is being implemented by a secure protocol would itself
require randomness. So, the authors employ unique zero-knowledge proofs.
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In the last section of [31] the authors prove that all assumptions are essential for the existence of collusion-
free protocols. For more details we refer the reader to [31].

Rational secure computation in the ballot box model. In [25] the authors consider two games, Γ
and G, where the former corresponds to an ideal mediated game and the later is the real game. Both in Γ
and G the parties act so as to maximize their own interest. Specifically, Γ is normal-form, mediated, finite
game of incomplete information, in which each party Pi may send her private input xi to the mediator, and
then, the mediator computes y = f(x1, . . . , xn). Each of the parties, may choose not to send her private
input or she may send an incorrect input value.

Conversely, G is an extensive-form game of incomplete information, unmediated, with the same parties,
private inputs and utility functions as Γ. The main difference here is that the computation takes place
in many rounds during which the parties exchange messages over a predefined communication channel, so
as to jointly compute f(x1, . . . , xn). As in Γ, a party Pi may choose not to send her input, and in both
games a predefined penalty F is being imposed on Pi. Informally, the security definition states that all
rational parties would not be able to distinguish between the two games. Since in Γ the computation is
being performed by a trusted mediator, the security property follows.

Regarding the communication model, the main assumption of [25] is the existence of a ballot box, which
requires the existence of envelopes. As we have already discussed in Chapter 2, under such an assumption,
one may put a message m into an envelope with the following guarantees: the envelope will not leak any
information related to m for a specific amount of time, and when someone unseals the envelope, the value
of m is unmodified. The ballot box just randomizes the order of the envelopes. The resulting ballot box
game is an extensive form game of incomplete information, in which the players exchange messages through
envelopes. Apart from the envelopes, the model considers also super-envelopes, in which the players may
put up to 5 envelopes. As in the case of the envelopes, super-envelopes preserve the secrecy and integrity
of their content. Besides the ballot box communication assumption, a broadcasting channel is also being
considered.

Informally, the main result in [25] is the following

Any mediated game of incomplete information Γ can be rationally and securely simulated by a ballot-box
game G.

As it is stated in [25] G rationally and securely simulates Γ if the following hold:

1. For any equilibrium in Γ, of any strength, there exists an equilibrium in G that has the same strength
and induces the same payoffs for every player (and vice versa for any equilibrium of G).

2. The privacy of the players in Γ is exactly preserved in G: no group of players (whether collaborating
or not) may acquire more information about other players’ inputs or outputs in G than they may in
Γ.

In order to construct the proposed protocol, [25] modifies the protocol presented in [17] so as to be compat-
ible with the ballot-box model. For technical details we refer the reader to [25].

Impossibility/possibility results for fair computation with rational players. In [21] the authors
consider rational parties and propose a fair two-party computation protocol which is a computational Nash
equilibrium. They assume that parties primarily prefer getting the correct output to not getting it (cor-
rectness), and secondly, each party prefers that the other party outputs an incorrect answer (exclusivity).
Regarding the communication model, the authors consider standard channels. Based on these assumptions,
they construct a protocol for fair two-party computation. Informally, the main result of [21] is the following:
consider an ideal world in which there exists a trusty entity that receives inputs from the rational parties,
computes the function f on the given inputs and supplies the parties with the function’s output. Then, if
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computing the function in the ideal world is a strict Nash equilibrium, i.e., if the parties have clear incentive
to compute the function in the ideal world, then the proposed protocol is a computational Nash equilibrium
for the real world in which the protocol simulates the trusted entity. The property according to which it is a
strict Nash equilibrium for two parties to compute the value of the function f , on inputs sampled according
to distribution D and utility functions as defined above, is called incentive-compatibility with respect to
f , D and the utility functions. Clearly, [21] incorporates rationality on SMPC, and since the ideal world
situation represents a mediated game with rational parties and the purpose is to eliminate the mediator, we
may say that this work touches both directions.

By considering rational parties, [21], circumvents, not only the impossibility result of [7] in fair two-party
computation, in which the parties may be either honest or malicious, but also the result of [3], which presents
an impossibility result in fair two-party computation with rational parties. The ideas presented in [3] are
close to that of [21], but in contrast to it they lead to an impossibility result. Nevertheless, and as it is
stated in [21], the setting considered in [3] is not incentive compatible, i.e., the parties do not have incentive
to compute the function even in the ideal world in which fairness is guaranteed. Briefly, in [3] the authors
consider the following utility function: (i) getting the correct output while the other party does not, gives
utility 1, (ii) getting incorrect output while the other party gets the correct output gives utility −1, (iii) any
other case gives utility 0. Now, consider the case where the target function is the boolean XOR function.
If both parties cooperate, then each one gets utility 0. On the other hand, if a party chooses to abort
the protocol and makes a random guess about the output, then regardless of the other party’s strategy in
guessing the correct output, the two parties are correct with independent probability 1/2 and the expected
utility of the first party remains zero. Therefore, even under the existence of a trusted entity, the parties
do not have clear incentive to compute the function using the trusted entity and they prefer to guess the
output of the function. For further details regarding the impossibility result in fair two-party computation
we refer the reader to [3].

In [21] the authors consider two parties P0, P1, with private inputs x0 and x1, respectively, and each Pi

wishes to compute fi(x0, x1), for i ∈ {0, 1}. Moreover, they analyze both the fail-stop and the byzantine
settings. In the former the parties may send the real input value or abort by sending the value ⊥, while in
the later, they are allowed to send ⊥ and abort, or send an arbitrary value of their choice. In detail, the
ideal world scenario of [21] considers the following game.

The ideal world game of [21]:

1. The input values x0, x1 are sampled according to some distribution D and xi is given to party Pi,
i ∈ {0, 1}.

2. Each party Pi sends an input x′i to the trusted party, i ∈ {0, 1}. In the fail-stop setting x′i may be the
real input value or ⊥, while in the byzantine setting x′i may be ⊥ or an arbitrary value. If a party
sends the value ⊥ indicates that she aborts the protocol.

3. If x′0 = ⊥ or x′1 = ⊥, the trusted party sends ⊥ to both parties. Otherwise, the trusted party sends
f0(x

′
0, x
′
1) to P0 and f1(x

′
0, x
′
1) to P1.

4. Each party outputs a value and receives utility which depends on the correctness of that output, and
the correctness of the output of the other party.

The authors provide a protocol which eliminates the trusted party in the game defined above. The key
idea of the protocol is similar to those presented so far, i.e., the parties do not know the protocol round at
which the output of the function comes to their hands, and therefore, they choose to follow the protocol up
to its termination. The parties interact with each other by exchanging two messages in each around. The
maximum number of rounds is n and there exists an unknown (for the parties) round i∗ with the following
properties: (i) up to round i∗ − 1 the parties exchange information irrelevant to the output of the function,
(ii) for all rounds i, i∗ ≤ i ≤ n, the parties exchange information that assist them to compute the output of
the function. The main point here is that i∗ is unknown. Therefore, if a party deviates from the protocol at
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round i < i∗, with high probability she won’t learn the correct output of the function. As we have already
stated, [21] provides two protocols, one for the fail-stop setting and one for the byzantine setting. Here
we give a high-level presentation for the fail-stop setting. The byzantine setting is similar and for further
details see [21].

The protocol consists of two parts. The first part incorporates a traditional SMPC protocol which im-
plements the following functionality.

The ShareGen pre-processing stage:
Input : x0, x1.
Main computation:

1. Chooses i∗ according to a geometric distribution with some parameter p > 0.

2. In n iterations construct the values r0i , r1i , i ∈ {1, . . . , n}, by doing the following:

(a) If i < i∗, then sample r0i according to distribution W0(x0), which is the distribution from which
P0 samples a guess for the function output when the other party aborts. Symmetrically, sample
r1i according to W1(x1). Therefore, if i < i∗, then rbi is Pb’s guess on the function output which
depends solely on her private input, b ∈ {0, 1}.

(b) If i ≥ i∗ the protocol sets rbi equal to the real function output of Pb, b ∈ {0, 1}, i.e., r0i = f0(x0, x1)
and r1i = f1(x0, x1). Hence, if i ≥ i∗, then rbi is the function output which corresponds to Pb.

3. Now the protocol constructs random secret shares for each rbi , b ∈ {0, 1}, i ∈ {1, . . . , n}. Specifically,
for each rbi the protocol generates random shares sbi and tbi such that rbi = sbi ⊕ tbi .

4. Send s01, . . . , s
0
n, s11, . . . , s

1
n to P0 and t01, . . . , t

0
n, t11, . . . , t

1
n to P1.

The functionality presented above is being computed using a traditional SMPC protocol. After the first
protocol stage the parties own shares of values, where some of them are useless, while others constitute
shares of the function output. In each round of the main part of the protocol the parties exchange shares
and reconstruct those values. Clearly, the values reconstructed in all rounds before the i∗-th round are
junk, while in the i∗-th round and all the successive rounds the parties repeatedly reconstruct the desired
outputs. Since the parties are unaware of the value of i∗ they choose to follow the prescribed protocol. Now
we present the main part of the protocol.

The protocol of [21]:

1. The parties securely compute ShareGen. Then, P0 receives s01, . . . , s
0
n, s11, . . . , s

1
n and P1 receives

t01, . . . , t
0
n, t11, . . . , t

1
n.

2. The protocol runs in n rounds. During the i-th round Pj reconstructs rji as follows:

(a) P1 sends t0i to P0. Then, P0 computes r0i = t0i ⊕ s0i .
(b) P0 sends s1i to P1. Then, P1 computes r1i = t1i ⊕ s1i .

3. If a party aborts before the other party has computed any ri value, then the second party outputs a
value according to the distribution which is used in order to guess the output of the function. In any
other case, i.e., if a party aborts and all parties have received at least one ri value, or if the protocol
terminates normally, then each party outputs the last ri value that she received.

The authors prove that under the incentive-compatibility assumption the above protocol constitutes a com-
putational Nash equilibrium. Then, they slightly modify the above protocols by incorporating message-
authentication codes to each sbi and tbi . The resulting protocol is a computational Nash equilibrium for the
byzantine setting. For more details see [21].
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Verifiably secure devices. In [24] the authors present the notion of a verifiably secure device as a model of
secure computation. Using those devices they (i) build secure multi-party computation protocols, and (ii),
they show how to achieve correlated equilibria. The proposed solutions rely on the existence of envelopes,
super-envelopes and ballot-boxes.

In order to analyze the security of the proposed construction [24] provides an analogue of the ideal/real
world scenario, which has been employed on works who aim to eliminate the trusted mediator using cryp-
tographic techniques. In the ideal world scenario the trusted mediator implements a desired functionality,
and all the parties communicate with the mediator in order to have access to it. As always, the goal is to
implement the mediator using an SMPC protocol so as to realize the real world scenario. In [24] the trusted
entity is substituted by another entity which is able to perform ballot operations in a way such that these
operations are verifiable by the parties that participate in the protocol. We now briefly describe the ideal
and real world scenarios, and the security definition considered in [24].

The ideal world scenario of [24]:

1. Each party chooses a private input xi of her choice and seals xi into an envelope. Then, she gives the
envelope to the trusted party T .

2. The trusted party privately opens the envelopes and privately computes (y, y1, . . . , yn) = f(x1, . . . , xn).
The authors assume that function f produces n+ 1 outputs. Each yi will be privately delivered to Pi

and y is public.

3. T publicizes y, seals each yi to an envelope and sends the envelope to Pi.

The authors also consider a weaker ideal scenario in which the parties may abort at the first step. For further
details see [24]. The purpose of [24] is to substitute the trusted party T with a verifiable party T ′, which
performs ballot operations. The word verifiable is used to indicate that T ′ has the following property: each
party Pi may verify that T ′ followed the prescribed sequence of operations. Before presenting the security
definition of [24], we briefly mention some basic operations upon envelopes. Each entity that participates
in a protocol that incorporates envelopes may publicly or privately open an envelope. In the former case a
public value is being generated, while in the later, both a public and a private value are being generated.
Therefore, the authors consider the notion of public and private history, and in order to achieve security in
the proposed model, the following properties need to be satisfied.

Security in [24]:

1. The public history constitutes the concatenation of publicly generated values and the following must
be true: if the public history generated is a fixed string R, then f has been evaluated correctly on the
private inputs and vice versa.

2. For each party Pi, her private history contains the corresponding private input xi.

3. Finally, the private history which corresponds to the verifiable device contains only a random string.

[24] expands the set of allowed operations with respect to ballot-boxes and gives detailed descriptions for
these operations. Moreover, they define global memory which is the part of the device that stores the ballots,
the public and private history of the execution. They also characterize the global memory gm as feasible
if there exists a sequence of global memories that lead to gm. Now, a computer C for a function f is a
ballot-box device, which receives a number of envelopes that correspond to the input x and outputs another
set of envelopes that correspond to f(x). The execution depends on the initial global memory of the device
which constitutes a secure computer for f if the following hold.

The secure computer of [24]:
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1. The device outputs envelopes that contain the value of the function on the input which was given
using the input envelopes (correctness).

2. During the execution of the computer C on f , the public history of the execution is the only additional
information that the parties gain. In other words, the parties do not learn anything about the other
parties’ input or output. After the termination of the execution the device contains only a random
string, and therefore, the device does not learn the parties’ inputs and outputs (privacy).

3. The device processes only information taken from the input envelopes. Moreover, all the input en-
velopes are being replaced by the output envelopes, i.e., any intermediate information that is being
generated by the computer is temporary and cannot be a part of the final output.

The authors implement verifiable secure devices for three basic functions: (i) the inverse of a permutation,
(ii) the composition of two permutations, and (iii) the permutation clone function which maps a permutation
p to the pair of permutations (p, p). For more details on these constructions we refer the reader to [24].
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Chapter 4

Rational Fair Computation for
Mechanism Design

It is a well-known result (see the seminal paper of Cleve [7]) that fair computation is generally impossible
to achieve under standard cryptographic assumptions of malicious behavior. Based on this, Asharov et
al. [3] proposed a game-theoretic based model of rationally-behaving cryptographic parties, under which
these inherent limitations could be overcome. Very recently, Groce and Katz [21] generalized this model
and proved very interesting results regarding two-party fair computation with such rational players. In this
section we shortly revisit the model and the main results in [21] and propose some closely related open
problems that can bridge further Cryptography and Game Theory, and in particular Mechanism Design.

4.1 The Model

Let’s assume two parties P0 and P1, each one having an input x0 ∈ X0 and x1 ∈ X0, respectively, drawn
from some joint probability distribution D over X0 ×X1. These two parties want to compute the value of
a certain deterministic function f on their inputs, where f = (f0, f1) : X0 ×X1 −→ {0, 1}∗ × {0, 1}∗. Party
P0 needs to receive the f0(x0, x1) component and P1 the f1(x0, x1) one. There are two settings in which
that could be done: an ideal world where there is a completely trusted third-party entity that implements
the computation and the reporting of f to the players and a real world where this is done by the players
themselves using some distributed cryptographic protocol Π to achieve this.

We model the players’ (i.e. the cryptographic parties’ P0 and P1) behavior in a game-theoretic way,
by assuming that their incentives are driven by their utilities on every possible outcome, defining thus
essentially a game1. So, we assume that the players are rational and they would either participate honestly
(by reporting their true inputs x0,x1) in the execution of protocol Π or they would misreport some value
x′0 6= x0 or even abort the execution x0 = ⊥ (x′1 6= x1 or x1 = ⊥ for player P1 in an analogous way), if this
is to give them higher resulting utilities.

In this model, the major question one asks is whether a certain function f , given some distributional
prior D on the players’ inputs, can be fairly computed this distributed way in the real world by a protocol
Π such that it is a Nash equilibrium for the players to honestly participate in its execution. Groce and
Katz [21] prove a surprising result: this is always possible, given the (rather necessary2) assumption that
the players would have a strong incentive to participate in such a computation at the ideal world where
everything is done in a centralized way by a trusted mediator.

We give here some subtle additional features of the model, and we refer the reader to the original
article [21] for all technical details and precise formulations. In addition to their values x0, x1, the players’
strategies also include a second component, W0, W1 respectively. These are probability distributions and

1For a very quick introduction in Game Theory and Mechanism design see e.g. section 2.2 of the current deliverable D3.1 or
Chapter 1 in D3.2.

2If that’s not the case, the players have no reason to want to give any kind of input anyways.

27



UaESMC Deliverable D3.1 Potential Uses of SMC in Game Playing and Mechanism Design

are used in case the trusted third part declines3 to return a value for f (i.e. he reports ⊥ to some players).
In such case, party P0 just generates an output W0(x0) and P1 outputs W1(x1). In some sense thus, these
probability distributions, which are common knowledge among the parties and the mediator, represent the
“prior knowledge” that each player has about the setting and it is essentially used as an “empty threat” in
case the other party does not cooperate.

4.2 Future Directions

The above discussion and results seem to provide a suitable ground fore some interesting questions and
possible future directions at the intersection of Cryptography and Mechanism Design:

• First, an immediate extension of the results of Groce and Katz [21] would be to generalize them for the
case of n ≥ 3 parties. This is not trivial, since one needs to take care of how the third party mediator
acts in case of only partial denials of strict subsets of the players to participate in the computation.
The mechanics of the interactions in such a multi-party setting are not straightforward and we need to
clearly decide on a “natural” behavior of the mediator. Also, the protocol Π proposed by the authors
in order to achieve this distributed implementation includes a construction that needs to be extended
in a clever way for more than two players, due to “loss of symmetry”. We think that this problem of
n ≥ 3 players is the most obvious and immediate one that asks for our future attention.

• Another possible direction, proposed also by the authors themselves, is that of exploring more strict
solution concepts for the underlying game, e.g. dominant strategies equilibria. This could be of
significant importance for Mechanism Design in particular, since incentive-compatibility in dominant
strategies is a predominant requirement. Furthermore, it is well-known that equilibria in dominant
strategies are much more “reliable” and straightforward to explain and implement, both semantically
but also computationally.

• Finally, the previous two points paired with our exposition in section 4.1 provide a very attractive
setting for trying to develop some general theory for distributed Mechanism Design: a mechanism
essentially consists of two functions, an allocation one and a payment one, computed over the input
types of the players. So, can we apply the result of Groce and Katz [21] in a meaningful and “natural”
way in order to provide models of distributed, secure and fair implementation of our mechanisms
by the various parties themselves i.e., loosely speaking, replacing f by the allocation and payment
functions?

3This happens if some party reports ⊥ to the mediator.
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Tim Roughgarden, Éva Tardos, and Vijay V. Vazirani, editors, Algorithmic Game Theory, chapter 1.
Cambridge University Press, 2007.

[45] V. Teague. Selecting correlated random actions. In Financial Cryptography, pages 181–195. Springer,
2004.

31



UaESMC Deliverable D3.1 Potential Uses of SMC in Game Playing and Mechanism Design

[46] A.C. Yao. Protocols for secure computations. In Proceedings of the 23rd Annual Symposium on Foun-
dations of Computer Science, pages 160–164, 1982.

32


	1 Introduction
	2 Foundations
	2.1 Basic notions from Cryptography and SMPC
	2.1.1 Secret sharing
	2.1.2 Public key encryption
	2.1.3 Oblivious transfer
	2.1.4 Zero-knowledge protocols
	2.1.5 Message authentication codes
	2.1.6 Commitment schemes
	2.1.7 Trapdoor permutations

	2.2 Basic Notions from Game Theory
	2.2.1 Normal-form games
	2.2.2 Nash equilibrium
	2.2.3 Correlated equilibrium
	2.2.4 Coalition resilient equilibria
	2.2.5 Computational Nash equilibrium
	2.2.6 Extensive form games & cheap talk
	2.2.7 Dominated strategies & iterated deletion
	2.2.8 Non-cooperatively computable functions


	3 Overview of Existing Work
	3.1 Using Game Theory within SMPC
	3.1.1 RSMPC based on rational secret sharing
	3.1.2 The mixed-behaviour model

	3.2 Using SMPC within Game Theory
	3.3 Bidirectional approaches

	4 Rational Fair Computation for Mechanism Design
	4.1 The Model
	4.2 Future Directions

	Bibliography

